Mach3 Plugin Development Tutorial

Mach3 is the most versatile, supported and cost-effective PC based CNC controller in the
world. The addition of the plugin SDK has made it also the most configurable. This
document is an introduction to plugin development for Mach3.

T oo [0 Tod o] 1 TSSOSO PP PR 2
GOIING STAMEA ...ttt s e e st e st e et e st e sreebeeneesreeneens 2
Installing the Mach3 SDKccvoiiiiie e 2
Building the SDK SAMPIES........ceiiiiiiiieiei e 3
YOUF FIFSE PIUGIN ...t e e e sreesae e e sreeeeas 8
Creating the New PIUGIN DLLccooiiiiiieiice e 11
Replacing the Generated Files with the PluginProto Filesc.ccccoveveiieiiccesnenee. 18
Editing The Replaced FIlES..........covoiiiiiiiiieee e 23
Adding the Remaining Project FIlES.........cccooviiiiiiieie e 33
Testing The CUSTOM PIUGINc.viiiiiiieeee s 38
Release Builds of the Custom PIUGIN..........c.cooveiiiiiiicceccceee e 40
Making Plugin TeSting EaSIEN.........cceiiiiiiiiiiiieee e 42
Adding @ ULHItY LIDFAIYooveiie ettt 44
Adding Functions to the Utility LIDrary ... 50
Adding A Dialog To The Custom PIUGINcccveiiiiiiieiecic e 52
Adding a MFC Class to Use the Dialog...........ccoviiriiieiincieeriseseee e 55
Adding Button Handlers to the Dialogccoveveiieiiiiececcece e 62
TeStiNG TNE DIAIOGcveviieiiieiee e 65
Adding Object MOl SUPPOIT.......ccviiiiiieie et 67
Using the Intrinsics and Object Model to Actually Do Somethingcccoceeeveiininnnne. 77
FINISNEA FIIE SES...c.eiiiiiiicicieee et 85
Plugin Development REFEIENCEoiiiiiiiie e 86
Mach3 Plugin IntrinSic FUNCHIONScoiiiiiieiecc e 86
Mach3 Plugin Control and Utility FUNCLIONS...........cccoiiiiiiiiiiieccee e 87
Mach3 Engine BIOCK Data..........cccccvveiiiiiiiiiiieicce e 88
MaCh3 ODBJECt MOTE ..o 88
The DBOMSQ LIDIAIYooceieieece ettt 88
Appendix A — Current Versions and NOTES ..o 91
Appendix B — Mach3 Plugin Development RESOUICES..........cccvcvveieeieeiiesieiie e siesreeias 91
Appendix C — USeful WEDSITES..........coviiiiiii e 91
Appendix D — Credits and Congratulationscccoceiveiieie e 92
Appendix E — Contact INFOrmMAatioN...........cooiiiiiiiiiiiie e 92

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Introduction

Mach3 is the small shop / home shop industry standard for PC based CNC controllers. It
is in use by thousands of advanced hobbyists, semi-pro and pro shops. It has created a
revolution all of its own. Now Mach3 plugins will add to this revolution by allowing
unrivaled customization of this already rich and powerful tool.

Getting Started

In order to develop Mach3 plugins you need to have the correct C++ development
environment and then the Mach3 SDK. The C++ development environment is Visual
Studio 2003. Since this product is no longer in production it must be obtained through
third party sources. | got mine on eBay. Once you have Visual Studio 2003, it should be
installed in the default location on drive C. All the subsequent sections of this tutorial
will assume this. The default installation location is:

C:\Program Files\Microsoft Visual Studio .NET 2003

Please verify this before going on with this tutorial.

Installing the Mach3 SDK

First, download the latest development version of Mach3 from
http://www.machsupport.com. Be sure to install and test this first. It is highly
recommended that you DO NOT try to develop and initially test plugins on a copy of
Mach3 that is connected to a live CNC tool. This can be a very dangerous activity.

This tutorial is currently based on Mach3 v2.48 and the SDK2.03.00.zip. I will update
these version numbers in appendix A as appropriate

| have my SDK installed in the folder:

C:\CNC\Mach3Development

Copyright James W. Leonard — Leonard CNC Software

http://www.machsupport.com/

Mach3 Plugin Development Tutorial

By unzipping the SDK2.03.00.zip in this folder and making sure the WINZIP option ‘Use
Folder Names’ is checked I get the following folder structure:

C:\CNC\Mach3Development
SDK2.03.00

Blank Plugin
BlankMovement
GalilPlugin
JoyStickPluglin
MachlIncludes
ncPod Oringial
ShuttlePro

If all has gone well and everything looks like | have said it should look, then you can
proceed to testing the SDK installation. If not either figure out what went wrong or start
over, removing files and folders that were located in the wrong places before trying
again.

Building the SDK samples

Building the samples that come with the Mach3 SDK is a vital first step that will verify
your installation and your ability to build (create) a functional plugin that will work with
Mach3.

The first plugin we will build is ‘BlankPlugin’. To do this open Visual C++ from the
Visual Studio menu and then use the ‘File’ menu. On this menu you will find ‘Open
Solution’. If you click on this you can browse for the solution to open. In this case it is:

C:\CNC\Mach3Development

SDK2.03.00
Blank Plugin

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

And the solution is named ‘MachDevice.sln’. By selecting this and pressing the ‘Open’
button you will see the main solution explorer view on the right of the screen.

Eile | Edit View Tools Window
Hew b
Open [3
Add Project 3

|24 Open Solution... .

ﬁ iy

=

Gl save Al Ctrl+Shift+5
Source Control 3

il

&

Recent Files 3
Recent Projects b
Exit

Open Solution

x|

Look in: |@ Blank Plugin LI e o X ~ Tools~
Debug
\&QI Release
History res
 MachDevice.sln
,o,j.
My Projects

e
D
n
=1
=]
b=

E

Favorites

L1
|.'i.I []

Places

My Network File name: |

=

Qﬁﬂ

Files of type ISnIutiDn Files (*.sln)

El

S
Cancel

[

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

This is the solution explorer screen with the ‘Solution Explorer’ tab selected at the
bottom of the screen.

Solution Explorer

P#¥ Solution 'MachDevice' (1
=

MachDevice

- (s3] References

= {3 Source Files

= 4 MachDevice.cpp
MachDevice.def
- MachDevice.idl
4] MachDevImplementation.cpp
= 4 stdafx.cpp

“ £9] XMLProfile.cpp
#- [Header Files

#- [Resource Files

----- ReadMe.ixt

I E Sulutiq}Explurer | ﬁ' Class View

| 4

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

At the top of the screen there is a ‘Build’ menu. On this menu there is a ‘Clean Solution’
option.

Build | Debug Tools Window H
Build Solution Ctrl+Shift+8
Rebuild Solution

| Clean Soluq@n
- &)

Batch Build...

Configuration Manager...

Use this to establish an initial default state for this plugin. It should work a little then
display:

Clean: 1 succeeded, 0 failed, 0 skipped

On the output panel at the bottom of the screen.

| Build -

Y

Clean: 1 succeeded, 0 fziled, 0 skipped

| =
0 | 21|
Task List | Bl output | B Find Results 1 |% Index Results for vsprintf function |@ Search Results |
| Clean succeeded || || Ln 12 Col 1

Now you can use the ‘Build” menu command ‘Build Solution’ to create the plugin.

Build | Debug Tools Window Hi
|4 Build Solution|>, Ctrl+Shift+8
Rebuild Solution

Clean Solution

Batch Build...

Configuration Manager...

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

This plugin will be called ‘digtizer.dll” and it will be found in this folder:

C:\CNC\Mach3Development
SDK2.03.00
Digitizer.dll

To test this first plugin copy it to the C:\Mach3\plugins folder and then start Mach3.
Open the ‘Config’ menu and select ‘Config Plugins’. The plugin configuration dialog
will display. The ‘Digitizer — Digitizing Plugin’ entry will have a red X in the first
column that is labeled ‘Enabled’. Click on this red X with your mouse and it will turn
into a green checkmark. This means the plugin will initialize on the next Mach3 load.
Stop Mach3 and restart it. Since this plugin is ‘blank’ it actually does nothing that can be
externally observed.

Ok, how do we know the plugin REALLY is running? Let’s add something that will
display when we click on the ‘Config’ button in the plugin configuration dialog.

In the Visual C++ project explorer window on the right side of the screen, click on the
‘+’ in the little box by the entry ‘Source Files’. These files are the actual C++ code that
is compiled into a Mach3 plugin. Locate the source code file ‘MachDevImplementation’
and double click on it to open the file in the Visual Studio editor. Now find the function
‘myConfig’. This is where we will some code to display a Message Box. Here is the
code we will add:

MessageBox (NULL, "It's ALIVE","Config OK",MB OK) ;

Here is the ‘myConfig’ function.

void myConfig (CXMLProfile *DevProf)

// Called to configure the device

// Has read/write access to Mach XML profile to remember what it needs
to.

{

} // myConfig

This function is called when the ‘Config’ button is pressed in the plugin configuration
dialog. We will add the ‘MessageBox” that displays text to show that all is indeed well.

void myConfig (CXMLProfile *DevProf)

// Called to configure the device

// Has read/write access to Mach XML profile to remember what it needs
to.

{
MessageBox (NULL, "It's ALIVE","Config OK",MB OK);

} // myConfig

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Build this plugin again and copy it to the C:\Mach3\plugins folder. Now when you open
the plugin configuration dialog and click on the ‘Config’ button for this plugin you
should see a Message Box with the text “It’s ALIVE” with a caption (title bar) that says
“Config OK”. You now have made your first customized Mach3 plugin!

Your first plugin

To make a plugin of your own you must either use ‘BlankPlugin’ as a starting point or
you can use the prototype file set and instructions that | am providing. This document
will only discuss the second method.

This Mach3 plugin file kit allows you to easily make a new plugin
that has a different name, a new GUID and debug messages that
can be displayed with the Sysinternals DebugView FREE debug
message viewer utility.

To make a new Mach3 plugin project use the Visual Studio appwizard
to create a 'new project’. This will be a MFC DLL project. This
project MUST be located in the directory immediately below the
Machincludes directory. This allows the directory heirarchy that

is present in these prototype files to operate correctly.

Example:
For Visual Studio 2003:

To create a new project 'CustomPlugin’ use these steps. First, create a new folder under
the SDK installation folder and name it ‘PluginProto’.

Mame =

I Blank Flugin
[—h BlankMovement
|2 CustomPlugin
Ih Galil PlugIn

|2 JoyStickPlugIn
[CiMachIncludes
ICincPod Cringial
[h ShuttlePro
CISDK2.03.00.zip

= PluginProto

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now, place the PluginProto.zip file that you downloaded in this folder

and unzip it there.

2 x|

= 2| &

£ SDK2.03.00

.7 Blank Plugin
L) BlankMovement
[#-{C3) CustomPlugin
-3 Galil Plugln
-0 JoyStick Plugin

[T Open Explorer window
[~ Overwrite existing files

My Documents @ MachIncludes
-3 ncPod Oringial
wr O iy
" H-C3) ShuttlePro
My Computer ~Files
‘F'i) Selected|files folders
'It') &l filesfalders in curent falder

Ny Metwarl
Places

% Al files/folders in archive

™ Files in Archive: I

[~ Skip olderfiles

¥ Use folder names

[

Here are the files that will be extracted to that folder

Mame =

‘TJPiuginProto.zip
Chres

Ih] activdbg.h

&1 dbg.cpp

Ih] dbg.h

@ Froto.cpp
Proto.def

Ih] Prota.h
Proto.rc

lef] ProtoImpl.cpp
Ih] ProtoImpl.h

[h] resource.h

e stdafx.cpp

] stdafi.h

lef] XMLProfile.cpp
[h] XMLProfile.h

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

These files will be used later in the creation of this new plugin. WARNING, be sure that
the tool that you use to “unzip’ this ZIP archive will ‘use folder names’ and create the
‘res’ folder. This is important for the plugin archirecture. | use WINZIP for all of my
work.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Creating the New Plugin DLL

Now we will start creating the new plugin project that will be a unique and original
plugin for Mach3.

In Visual Studio 2003 use File->New->Project and select

Visual C++ Projects->MFC->MFC DLL

New Project x|
Project Types: Templates: IEJ
~{_7] \isual Basic Projects = F
{0 Visual C# Projects FiC FlC
=3 Visual C++ Projects MFC ActiveX MFC MFC DLL
D -MET Control Application
D ATL .
{23 MEC %f
~{1 Win32
-{I0 General MFC ISAPI
{1 Setup and Deployment Projects = | Extension DIl
-] Other Projects B
‘A dynamic-link library that uses the Microsoft Foundation Class library.
Marme: | CustormPlugin
Location: | C:ACMC\Mach3Development\SDK2.03.00 ;l Browse... |

Project will be created at C:\CNC\Mach3Development\SDK2.03.00\CustomPlugin.

FMore | | oK [}_I Cancel | Help |

Then browse for the directory where the Mach3 SDK was installed. In this case it is
C:\CNC\Mach3Development\SDK?2.03.00

Enter the project name that you want created. In this case it is CustomPlugin. Press the
'Ok’ button and the project files in a new solution will be created.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Press the ‘Finish’ button to complete the project and solution creation.

MFC DLL Wizard - CustomPlugin

Welcome to the MFC DLL Wizard

This wizard generates an MFC dynamic link library application project with the properties vou
specify.

These are the current project settings:
@ Create a regular DLL (MFC shared)
PEths S by Click Fimish from any window to accept the current settings.

After you create the project, see the project's readme. twt file for information
about the project features and files that are generated.

Finishi I Cancel | Help |
\j

The MFC DLL AppWizard uses a shared MFC DLL which is USUALLY a bad thing, so
we will change that to using the MFC static library first. Do this by selecting

Project->Properties

Project | Build Debug Tools Window
<% Add Class...

“# Add Resource...

2 Add New Item... Ctri+Shift+A
i Add Existing Item... Shift+Alt+A
1 MNew Folder

Unload Project

Add Reference...
Add Web Reference...
Set as StartUp Project

| Properties

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Then select:

Configuration Properties->General

Then change 'Use of MFC' from 'Use MFC in a Shared DLL' to 'Use MFC in a Static

Library'.

CustomPlugin Property Pages

x|

Configuration: |Acth.fe(Debugj

| Pphatform: |Active(win32)

=l

Configuration Manager... |

‘=3 Configuration Propertier |E General
g General Output Directory
Debugaing Intermediate Directory
Qoo+ Extensions to Delete on Clean
[Z3 Linker

Project Defaults
Configuration Type

Build Browser Information
Use of MFC

[Z3 Resources

[Z3 Browse Information
(23 Build Events

[Z3 Custom Build Step
[Z3 wWeb Deployment Use of ATL

Minimize CRT Use in ATL
Character Set

Use Managed Extensions
Whale Program Optimization

References Path

Debug
Debug
.0bj;.ilk;*.pdb;*.tb; *.tli;*.th; *.tmp;*.rsp; *.b

Dynaric Library (.dll}
Mo
IUse MFC in & Shared DLL

Use Standard Windows Libraries

Use MFC in a Shared DLL

70
Mo

Use of MFC

Specifies how MFC is used by the configuration.

oK

Cancel

Ppply Help

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Insure that the following settings are made to the project:

additional include directories ..\MachiIncludes

CustomPlugin Property Pages

Configuration: |Act'rve(Debugj

=4 Configuration Proper =
General —
Debugging
8 C/c++
% General
Optimization
Preprocessar
Code General
Language
Precompiled t
Qutput Files
Browse Infor
Advanced
Comrmand Lin
(23 Linker
[Z1 Resources
(23 Browse Informat

x| pitform: |Active(win32) |

Additional Include Directories
Resolve #using References
Debug Information Format
Suppress Startup Banner
Warning Level

Detect 64-bit Portability Issues
Treat Warnings As Errors

X|

Configuration Manager... |

..\MachIncludes

Program Database for Edit & Continue (/71

Yes (/nologo)
Level 3 (/wW3)
Yes (/Wp64)
Mo

[Z3 Buid Events —

(X3 Custom Build Ste _
[T T P S Yy PR ——
KN _'I_I

Additional Include Directories

Specifies one or more directories to add to the include path; use semi-colon

delimited list if mare than one.

(/1[path])

ok | cancel |

oy |

Help

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

additional dependencies winmm.lib iphlpapi.lib version.lib

CustomPlugin Property Pages x|

Configuration: I.ﬁ.ctil.fe[Debugjl j Platform: |Acti'.fe[‘n.ﬂ.‘in32] ;l Configuration Manager... |
=3 Configuration Propertie: Additional Dependencies winmm.lib iphlpapi.lib version.lib
General Ignaore All Default Libraries Mo
Debugging Ignore Specific Library
G ':ffc""" Module Definition File .\CustomPlugin.def
33 Linker Add Module to Assembly
General -
% Embed Managed Resource File
Debugging Force Symbol References
System Delay Loaded DLLs
Optimization
Embedded IDL
Advanced

Command Line
[Z1 Resources
(22 Browse Information
(23 Build Events
[Z3 Custom Build Step

3 web Deployment Additional Dependencies
Specifies additional items to add to the link line {ex: kermel32.1ib); configuration

4| |_,| specific.

q’& I Cancel Spply Help

A

Press ‘OK’ to complete this step.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Use File->Save All to write the project settings to disk

File | Edit View Project Build Debu

New [

Qpen »

Add New Item... Ctrl+5Shift+4
Add Existing tem... Shift+Al+A
Add Project 3

Open Solution...

Close Solution

D &l &l

Save CustomPlugin Ctrl+5
Save CustomPlugin As...

[@ saveal | culsshiftes ||
Source lD:untrgiE [3
i}
=
Recent Files 3
Recent Projects b
Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Then close the solution for the next steps

File | Edit View Project Build Debu

New »

Qpen »

Add New Item... Ctrl+5Shift+4A
Add Existing tem... Shift+Alt+A
Add Project 3

Open Solution...
Close Solution |-,

a0 [81] 51,

N
Save CustomPlugin Ctrl+5
Save CustomPlugin As...
Save All Ctrl+Shift+5

Source Control 3

Recent Files 3

Recent Projects b
Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Replacing the Generated Files with the PluginProto Files

Now delete the files named 'CustomPlugin.cpp’, ‘CustomPlugin.def', ‘CustomPlugin.h'
and 'CustomPlugin.rc' that were created in the project directory:

C:\CNC\Mach3Development\SDK?2.03.00\CustomPlugin

Mame = |

@CustnmPlugin.nch
:CustomPlugin.rc
[oa CustomPlugin.s Open

Gl CustomPlugin.su Edit

(& CustomPlugin.ve Sean with AVG

] ReadMe.txt Open With »
et g
] stdafx.h Send To *
Cut
Copy

Create Shortcut

MI
Rename

Froperties

These files will be replaced with files taken from the ‘PluginProto.zip’ archive that you
unzipped at the beginning of this tutorial.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

AND delete the file named 'CustomPlugin.rc2" in the RES subdirectory.

C:\CNC\Mach3Development\SDK?2.03.00\CustomPlugin\res

Mame = |

CustomPlugin.rc3

Open

Edit

Scan with AVG

Open With »
& WinZip »

Send To J

Cut
Copy

Create Shortout

WI
Fenam

Properties

Then copy all the files and RES subdirectory from the PluginPrototypeFiles directory.

MName = | Sizel Type | Da
Chres File Folder 10,
6] CustomPlugin.nch 27 KB Visual C++ IntelliSe... 10,
ECustnmPlugin.sln 1 KB Microsoft Visual Stu... 10,
5k CustomPlugin.suo 8 KB Visual Studio Soluti... 10,
(24 CustomPlugin.vepro] 5 KB VC++ Project 10
[Z] ReadMe.bxt 3 KB Text Document 10,
@ Resource.h 1 KB C/C++ Header 1a,
|¢f] stdaf.cpp 1 KB C++ Source 10
@ stdafx.h 3 KB C/C++ Header 10,
[n] XMLProfile.h 1KB C/C++ Header 5/

Confirm Folder Replace x|

j_,) This folder already contains a folder named 'res',
If the files in the existing folder have the same name as files in the

folder you are moving or copying, they will be replaced. Do you stil
want to mave or copy the folder?

fes Yes to All | Mo | Cancel

Answer ‘Yes to all” here to completely update everything

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Here is the folder after the copy is completed.

Mame =

] CustomPlugin.nch
@CustnmPIugin.sln
5k CustomPlugin.suo
(4 CustomPlugin.vcproj
[Z] ReadMe. bt

(11| Resource.h

I Froto.cpp
Eil Froto.def
. Proto.h
Proto.rc
[F] ProtoImpl.cpp
(1] ProtoImpl.h
XMLProfile.cpp

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Rename all the 'Proto*.*" files to CustomPlugin*.* after they have been copied to the
project folder.

MName = | Size
Cires
@Custnml:‘lugin.nch 27 KB
ECustnmPIugin.sln 1 KB
4 CustomPlugin.suo 8 KB
(4 CustomPlugin.vepro 5 KB
[Z] ReadMe.bxt 3 KB
[h] Resource.h 1 KB
e stdafx.cpp 1 KB
] stdafi.h 3 KB
[h] XMLProfile.h 1 KB
Ih] activdbg.h 1 KB
ief] dbg.cpp 3 KB
[h] dbg.h 2 KB
e Open with Visual Studio .NET 2003
[h]pr Open
@EPr Edit
61 Pt Scan with AVG
I Pr open With b
e LA WinZip 3
Send To r
Cut
Copy
Create Shortcut
Delete
EETN—
Froperties

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Here is the file ‘Proto.cpp’ renamed to ‘CustomPlugin.cpp’.

MName =

|[Zares

] CustomPlugin.nch
@CustnmPlugin.sln
[CustomPlugin.suo
(4 CustomPlugin.vcproj
[Z] ReadMe. bt

[h] Resource.h

e stdafx.cpp

h] stdafi.h

h] XMLPrafile.h

h] activdbg.h

¢ dbg.cpp

h] dbg.h

&s] customPlugin.cpp] |
Proto.def

Ih] Proto.h
EGJProto.rc

lef] ProtoImpl.cpp

[h] ProtoImpl.h

lef] XMLProfile.cpp

Here is the finished folder of renamed files. Be sure to open the ‘res’ folder and rename
‘proto.rc2’ to ‘CustomPlugin.rc2’ also.

Name =

[Cres
@CustnmPlugin.nch
@Cus’mmF‘Iugin.sln
5k CustomPlugin.suo
Ed customPlugin.vepro]
[Z] ReadMe.bxt

[h] Resource.h

e stdafx.cpp

h] stdafi.h

h] XMLProfile.h

h] activdbg.h

& dbg.cpp

h] dbg.h

l&f] CustomPlugin.cpp
CustomPlugin.def
[h] CustomPlugin.h

&5l CustomPlugin.rc

lef] CustomPluginImpl.cpp
Ih]{CustomPluginImpl.h }
lef] XMLProfile.cpp

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Editing The Replaced Files

Edit all the files so that all references to 'Proto’ become 'CustomPlugin’

File | Edit View Tools Window Help
New oo BB,

| Open 3 Project... Ctrl+Shift+0
Close £ Project From Web...
Add Project b [Eile... . Cirl+0

Open Solution... & File From WE%---

Close Solution Convert...

dave Selected tems Ctrl+5

m

ave Selected Items As

Save All Ctrl+Shift+5

= I W
o un

Source Control 3

Page Setup
Print Ctrl+P

i B

Recent Files 3
Recent Projects 4
Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Open the file ‘CustomPlugin.cpp’

Open File x|

Look in: |@ CustomPlugin | &~ o W O = Tools~
res e stdafx.cpp
\&ﬂ [h] activdbg.h [h] stdafx.h
History . CustomPlugin.cp @ ¥MLProfile.cpp

CustomPlugin.def [h] XMLProfile.h
[h] CustomPlugin.h

,o,.} 5:] CustomPlugin.nch

My Projects | CustomPlugin.re
[eA CustomPlugin.sin

= A CustomPlugin.suo
b ; iz CustomPlugin.veproj

le§] CustomPluginImpl.cpp

Desktop
[h] CustomPluginImpl.h
@ dbg.cpp
#] [mdbgh
Favorites] ReadMe. bt

[h] Resource.h

=]
]

My Network File name: |
Places

=
]
4

i

Files of type IAII Files (*.*) Cancel

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Close the solution explorer that was opened by default, it will not be needed. You will
have to click on the ‘X’ twice to completely close this window.

29 Microsoft Development Environment [design] - CustomPlugin.cpp
File Edit View Debug Tools Window Help

P sHd | s Ra|o-~-8-B,

E@%Lsﬂ

Toolbox a X

| - | [# GetDRO
2 A% %%

=10l x|

- BE=mR T

in.cpp |

Dialog Editor -]

R Pointer

=] Button

[} Gheck Bax

™| Edit: Gontral
Combo Box
List Box
Group Box
Radio Button
' Static Text
Picture Control
Horizontzl Scrol...
Vertical Scroll Bar
Slider: Control

(S i N N |

iy
I

4 b x |Solu‘tion Explorer

=

= l/,-" Proto.cpp :

"stdafx.h"
"resource.h"
"Proto.h"
"TrajectoryControl.h™
"Hach4View.h"
"Engine.h"
"rz274ngc.h"
"XMLProfile.h"™

#include
$#include
#include
#include
#include
#include
#include
#include

74

Defines the initialization routines for

#pragma warning(disable:4005) // kills redef errors from 1

th

=
[&4 Solution 'Solution1’ (0 projects)

// This is a Generalized Device file

// The actual device is implemented in the file with these

v e

=2 SOmConto] // Conventionally this is ProtoImpl.cpp

Clipboard Ring | -
General | L 4
[output 1 x|

Task List [E] output | 5& Find Results 1 |% Index Results for wsprintf function |@ Search Results \

I Q Solution Explorer ﬂ Class View |

| Ready

| [tn1

Col 1 ch1 [ms]

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now we have the edit in a much bigger space

2% Microsoft Development Environment [design] - CustomPlugin.cpp
File Edit View Debug Tools Window Help

B-a sWHd s2do-~- 8-, v | @ GetdRO

=1o] x|

- RERR -,

A boa [EE22 6%%%.

Toolbox 3 X|| © Plugi .l:pp| gk
Dialog Editor ﬂ E|I/,-" Proto.cpp @ Defines the initialization routines for the DLL. g

k Pointer tinclude "scdafx.ne

#include "stdafx.
= Button .
#include "resource.h"

|: CHECKBOX #include "Proto.h"

= | Edit Contral #include "TrajectoryControl.h"

|| Combo Box $include "Mach4View.h"

| List Box #include "Engine.h"

— : 5 . " "

i Group Box *:anl.:lde rz274ngc.h

~ : #include "XMLProfile.h"

() Radio Button

/'j Static Text #pragma warning(disable:4005) // kills redef errors from resources.

| Picture Control

| Horizontal Scral... /7

[Vertical Seroll Bar,

rl__ Slider Gantrol 124 T:nis is a Gene:t_:ali%ed_Device file_ .) o .)

v . // The actual device is implemented in the file with these entries.

£_ spin Cantrol // Conventionally this is ProtoImpl.cpp

Clipboard Ring ﬂ -
General 4
| output 3 x|

Task List [Output [E& Find Results 1 |% Index Results for vsprintf function |@ Search Results |

| Ready

I [tn1 Coll chi

|ms|

Copyr

ight James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Use the ‘Find and replace’ feature of the editor to locate all instances of ‘Proto’ and
change it to ‘CustomPlugin’.

Edit | View Debug Tools Window Help
- 2 b -
Cu
¥ Cut Chrl+X
Copy Ctrl+C Efines the initialization rout
[FPaste Ctrl+v
Cycle Clipboard Ring Ctrl+Shift+Vv S
ce.h™
x gElEtE Del B
Select All CH A EoryControl . h™
| Eind and Replace 3 | 4 FEind Ctrl+F
&
Go To... Ctrl+3 v Replace Ctri+H
Insert File As Text... g Find in FiIEE‘E Ctrl+Shift+F
Advanced 3 f‘.;’ Feplace in Files Ctrl+Shift+H
Bookmarks b |44 Find Symbol Alt+F12
Outlining 3
IntelliSense P Eralized Device file
Replace o X
Find what: IPI’DtD ;I ﬂ Find MNext I
Replace with: |Cu5tumPIugin| =] ﬂ Replace |
I~ Match case Search Repitée Al |
™ Match whole word & Current document
™ Search hidden text ¢ Al gpen documents Lkhlll
™ Search up) Current: project Close |
—_ T : 7| £ Dnlvs =current blocks
CustomPlugin.cpp 4k
= // Proto.cpp : Defines the initialization routines for the DLL. =l

#include "stdafx.h"

#include "resource.h"

#include "Proto.h"

$include "TrajectoryControl.h™
#include "Mach4View.h"
#include "Engine.h™

Y
-
4

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now save this file.

Eile | Edit View Debug Tools Wir

Hew »
DOpen b
Close

Add Project 3

Open Solution...

Close Solution

ﬂ gj.x 5]2

Save CustomPlugin.cpp . Ctrl+5S

Save CustomPlugin.cpp E%
Advanced Save Options...
Save All Ctrl+Shift+5

Source Control 3

Fage Setup...
Print... Ctrl+P

[B

Recent Files 3

Recent Projects b

Exit

Note that is you don’t see the name of the file you want to save, just move the mouse out
side the list and release the button. The click on the text that was edited in the editor
window and try again. This should make the file name appear instead of ‘Solutionl1’.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

And close it.

File | Edit View Debug Tools Win

Hew b

Open »

| Close [
TN
Add Project k

Open Solution...

Close Solution

A0 &1, &1,

Save CustomPlugin.cpp Ctrl+5
Save CustomPlugin.cpp As...
Advanced Save Options...

Save All Ctrl+Shift+5

Source Control 3
Fage Setup...
Erint... Ctrl+P

I B

Recent Files k

Recent Projects 4

Exit

Edit CustomPlugin.def , CustomPlugin.h , CustomPluginimpl.cpp and
CustomPluginlmpl.h in the same manner.

Edit resource.h before editing CustomPlugin.rc. These files have a relationship that must
be maintained.

CustomPlugin.rc requires manual editing since ‘Find and Replace’ does not work on a
windows resource file that is opened with the resource editor. Resources will be
discussed later in this document. When you open CustomPlugin.rc you will see the
following screen.

CustomPlugin.rc | 4 x
B3 CustomPlugin.rc
E-E3

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Click on the ‘“+’ beside ‘Version’ and you will see this screen.

CustomPIugin.rc| 4%
E-23 CustomPlugin.rc
E-Z3 Version

Double click on VS_VERSION_INFO and then you will see this screen.

CustomPlugin.re - CustomPlugin.rc..._ INFO - Version) | 4 b x

PRODUCTVERSION 1,0,0,1

FILEFLAGSMASK 0x3fL

FILEFLAGS Ox0L

FILEOQS VOS__WINDOWS32

FILETYPE VET_DLL

FILESUBTYPE VETZ2_UNMKMOWHN

Block Header English (United States) (040904e4) LI

Now you can scroll down and just change each instance of ‘Proto’ to ‘CustomPlugin’.
You do this by double clicking on each item which gives you an edit box to change the
text in.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Change the plugin name and GUID associated with the plugin. This is contained in
CustomPlugin.cpp The new GUID is produced by using the utility GUIDGEN which
should be found in:

C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools

You use GuidGen by double clicking on it with Windows Explorer. This will give you
this screen. Select the third radio button ‘3. static const struct GUID = {...}” and press

the ‘Copy’ button.

Create GUID = =] x|

Choose the desired format below, then select "Copy™ to a7
copy the results to the clipboard the results can then be k

. pasted into your source code). Choose "Bdt" when
Hone Mew GUID

. GUID Format Exit |

" 1. IMPLEMENT_OLECREATE(...)

" 2 DEFINE_GUID{..)

% 3. static const struct GUID =1 ... }

" 4 Registry Format fie. bocccooccoc: ... 000 §)

— Result

/¢ {66B338D6-CHER-4433-9E11-943B35B6E 735}

static const GUID <<names> =

{ (x66b338d6, Mecheb, Med433, { beSe, (11, oS4, IxBb, (35, (b6,
Oee7, be3b))

The result can then be pasted into the CustomPlugin.cpp source code where the old
GUID is and the extra lines of code produced by GuidGen removed.

The goal is to replace this line:

{ OxC9FB259, 0xB864, 0x40A5, { 0xB5, O0x9F, 0x65, O0xEl, Ox1lE, 0x20, O0x9F, 0xC4 } };

With the new GUID, which in this case only is:

{ 0xd52a7ae5, 0x4740, 0x4b28, { 0xa9, Oxfl, Ox8c, Oxb, 0x72, 0x92, O0x6d, 0xad } };

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

SURE to use GuidGen to make a GUID for each plugin that you deriwve
om this CustomPlugintype file set

f The one and only CCustomPluginfpp object |
CCustomPluginipp thelpp;
const GUID CDECL BASED CODE _tlid =
{DE2ATRAES5-4T740-4b28-A9F1-8C0BT2926DRS}

static const GUID <<name>> =
{ Oxd52a7aelS, 0x4740, O0=x4b28, { 0O=xa¥%, Oxfl, Ox8c, Oxb, O0x72, 0x9%2, Oxed, 0xal } }:

{ OxC9FB258, OxBE&4, Ox40R5, { OxB5, Ox9F, Ox65, OxEl, Ox1E, 0x20, Ox9F, OxC4 } };

const WORD wverMajor
const WORD wverMinor

1;
a; -
| »

Remove the old GUID and the ‘static const GUID <<name>> =’ and you will end up
with this screen, except you will have different GUID values, of course.

Il

E SURE to use GuidGen to make a GUID for each plugin that you derive
rom thisz CustomPlugintype file set

B
£
f The one and only CCustomPluginapp object

CCustomPluginApp thelpp:

const GUID CDECL BASED CODE tlid =
{ OxdS2aTae5, 0x4740, Ox4bk28, { Oxad, 0xfl, Ox8c, Oxb, 0x72, 0OxS52, Oxeéd, Oxa’% } };

const WORD _wverMajor = 1;
const WORD _wWVerMinor

I
=]
-~

f CCustomPluginfApp initialization

B BOCL CCustomPluginfpp::InitInstance ()

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding the Remaining Project Files

Close this file and then reopen the original solution file that was generated when we
created the DLL originally with the AppWizard.

Look in:

Open Solution

|@ CustomPlugin LI e o X ~ Tools~

x|

o
E=
=]
=]
&
(4]
w

B

M=

My Metwork
Places

'ares

File narme: |

L] Lo

Files of type ISnIutinn Files (*.sln)

nr
Cancel

[

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Reopen the solution explorer window so you can navigate around the project easily.

View | Project Build Debug Tools
|Q Solution Explorer . Ctri+Alt+L
Class View lA\'\::trl+5hi1’t+c
Server Explorer Ctrl+Alt+5
Resource View Ctrl+Shift+E
Properties Window F4
Object Browser Ctri+Alt+]
Toolbox Ctrl+Alt+x¢

) &

ki
il

s % [B

Fending Checkins

Web Browser

Other Windows

Show Tasks

Toolbars

Full Screen Shift+Alt+Enter

v v v v

C#th O

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

You will now see this screen.

2 CustomPlugin - Microsoft Visual C++ [design] =] x|
File Edit View Project Build Debug Tools Window Help

- S HE| % BRR| oo 8B) vebug | BE R E-

- | # Proto

Toolbox 1 X | Solution Explorer - CustomPlugin & X |
General ﬂ
. Pointer leé Solution "CustomPlugin’ (1 project)

= [Zd CustomPlugin

-~ 3] References

- {23 Source Files

; &4 CustomPlugin.cpp
[l CustomPlugin.def
i 4] stdafx.cpp

B+ {23 Header Files

;] CustomPlugin.h
Resource.h
stdafich
Resource Files
CustormPlugin.rc
CustomPlugin.rc2

----- ReadMe.tit
Output
Task List 5] Output | B Find Results 1 | 53 Index Results for vsprintf function |63 Search Results |
| Ready | | | 4

Add the files 'dbg.cpp’, 'dbg.h’, "XMLProfile.cpp' and "XMLProfile.h'
to the project. Add the user code implementation files also. In
this case they would be ‘CustomPluginimpl.cpp' and 'CustomPluginimpl.h'

Project i Build Debug Tools Window
"l‘g Add Class...

"i‘g Add Resource...

] Add New Ttem... Ctrl+Shift+A
|2 Add Existing Ttem... pShift+Alt+A
* New Folder ’

Unload Project

Add Reference...
Add Web Reference...
Set as StartUp Project

Froperties

Copyright James W. Leonard — Leonard CNC Software

Select the files to add and press ‘Open’.

Mach3 Plugin Development Tutorial

Add Existing Item - CustomPlugin
= «-®E @ X i E - Took-

Look in:

|@ CustomPlugin

=
=

My Metwork
Places

[h] activdbg.h

lef] CustomPlugin.cpp

[h] CustormPlugin.h

5l CustomPlugin.rc

[F] CustomPluginImpl.cpp

HMLProfile.h

File narme: |

=

Files of type I'-.-"usual C++ Files (*.c; *.cpp; *.o0; *.co; *.tli *.tlhj

[

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Use ‘File->Save All’ to save the current project state.

EiIe|Edit View Project Build Debu

Hews [3

Open b

Add New Ttem... Ctrl+Shift+A
Add Bxisting Ttem... Shift+Alt+A
Add Project 3

Open Solution...

Close Solution

i &l &1,

Save CustomPlugin Ctrl+5S
Save CustomPlugin As...

[@ save Al . Cirl+Shift+s

M
Source Control 3

i B

Recent Files 3

Fecent Projects 4
Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Testing The Custom Plugin

Test build and then copy the finished CustomPlugin.dll from the folder
C:\CNC\Mach3Development
SDK2.03.00
CustomPlugin
Debug
To the Mach3 plugins folder:

C:\Mach3\plugins

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Start Mach3 and configure the installed plugins so that only the new CustomPlugin is
enabled. This will make the testing of the new plugin very simple.

PlugIn Control and Activation x|

Enabled FlugIn Name Config
ef CustomPlugin-CustomPlugintype-Plugln-—James-... | CONFIG
¥ Digitizer-Digitizing-PlugIn-—A.Fenerty-Ver-1.0a CONFIG
¥ Flash-FlashScreen-SWF-PlugIn-A.Fenerty—B.-Ba... | CONFIG

lw
4
¥

JoyStick-JoyStick-PlugIn--Art-Fenerty-Ver-1.0a CONFIG
Probing-3d-Digitising-Fenerty-Barker-Version-2.0... | CONFIG
Video---B.Barker-Ver-1.0 COMFIG

Close Mach3 and then restart it so that all the DbgMsg messages that are in the
CustomPluginlmpl.cpp file can be seen at startup. Confirm debug messages are seen in
DebugView so that you are sure the plugin loads and runs successfully.

In order to use DebugView you must download it from the Microsft Sysinternals
webpage and then install it. Here is what a test run on my laptop with Mach3 looks like at
startup time:

% DebugView on \\WINBOOK-415V (loc - O] x|
File Edit Capture Options Computer Help

eHdd | R E» A BEBT| 9P | M

|Time |Debug Frint
| 1] o.ooooooon [2748] myvInitControl entrv
1 0.0000e900 [2748] myInitControl e=xit
e 0.01766230 [2748] myProfilelnit entrvy
3 0.01770253 [2748] myProfilelnit exit
4 060074115 [2748] myPostInitControl entrvy
N5 0.60158932 [2748] myPostInitControl e=xit
[
I
:4| b

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Release Builds of the Custom Plugin

The final step in the first part of this tutorial is adding the necessary configuration to
Visual Studio to allow a release build of your new plugin. Release builds remove ALL
DbgMsg debugging outputs and overhead leaving only RelMsg and ErrMsg output to
DebugView. A release build is also smaller and faster, it is the form that you want to
ship to your customers.

Open Visual Studio and change the build type from ‘Debug’ to ‘Release’.

#% CustomPlugin - Microsoft Visual C++ [design] - CustomPluginImpl.cpp
File Edit View Project Build Debug Tools Window Help

H-a-SH@| 4 BR|v-o-8-B oebug I o Proto

A B 2ol ?@i@é@hP
| Toolbox 3 X || start Page | dbg.cpp | CustomPlugin.cpp Configuration "Manager...

CustomPlugin - Microsoft Visual C++ [design] - CustomPlug
File Edit View Project Build Debug Tools Window Help

H-m-el @ BRR oo E-E|) Release -
B b e 222 2] 6% % K.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now repeat the configuration that was done initially to give the location of the
Machincludes folders and the added dependencies.

CustomPlugin Property Pages x|

Configuration: |Acthfe[ReIease] ;I Platform: |Acti\fe(‘u*.‘in32] ;I Configuration Manager... |
=3 Configuration Proper « | Additional Include Directories ..\MachIncludes
General Resolve #using References
Debugging Debug Information Format Program Database (/Zi)
A C/C++ Suppress Startup Banner Yes [/nologo)
¥ gzgiiwzlatinn Warmning Level Level 3 (fW3)
Preprocessor Detect 64-bit Portability Issues Yes (/Wp64)
Code General Treat Warnings As Errors Mo
Language
Precompiled t
Output Files
Browse Infor
Advanced
Cormmand Lin
(23 Linker
(23 Resources
(23 Browse Informat
(3 Buid Events — | additional Include Directories
(3 Custom Build Ste _ Specifies one or more directories to add to the include path; use semi-colon
i T 1 P T . Voo Py S " .
4 I I N delimited list if more than one. (/I[path])

ok | cancel | mpy | Hep |

CustomPlugin Property Pages x|

Configuration: |Release LI Platformm: |Acti\fe(‘u*.“in32] ;l Configuration Manager... |
23 Configuration Properties Additional Dependencies winmm.lib iphlpapi.lib version.lib
General Ignore All Default Libraries MNa
Debugging Ignore Specific Library
5] C/C++ Module Definition File \CustomPlugin.def
= L|nkgr | Add Module to Assembly
" Inepnu:-;.-:m Embed Managed Resource File
Debugging Force Symbol References
System Delay Loaded DLLs
Optimization
Embedded IDL
Advanced

Command Line
[Z3 Resources
[Z3 Browse Information
(23 Build Events
[Z3 Custom Build Step

3 web Deployment Additional Dependencies
Specifies additional items to add to the link line (ex: kermnel32.lib); configuration

4| |j specific.

EM I Cancel FApply Help

T

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now when you make the release build the finished DLL will be in:

C:\CNC\Mach3Development
SDK2.03.00
CustomPlugin
Release

Making Plugin Testing Easier

Up to this point we have been copying the compiled plugin from either the Debug or
Release folders associated with our CustomPlugin project. There is a much easier way to
do this, it is called a “Post Build Event”. A Post Build Event will let you execute a
command line application (copy in this case) to perform some extra processing that is
only done for a successful build. What we will do is set this up to automatically copy the
CustomPlugin.dll to the Mach3 plugins folder so that we can test it. The post build
events are set by opening the Project->Properties menu.

Project | Build Debug Tools Windov

% Add Class...

“# Add Resource...

2 Add New Item... Ctrl+Shift+A
- Add Existing tem... Shift+Alt+A
1 Mew Folder

Add Web Reference...
Set as StartUp Project

Gl

CustomFlugin Properties... [

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

For Debug builds we need to select “Post Build Event” and add the following Command
Line:

copy .\debug\CustomPlugin.dll c:\Mach3\plugins

CustomPlugin Property Pages x|

Configuration: |Actwe[Debug] ;I Platform: |Acti\fe(‘u*.‘in32] ;I Configuration Manager... |
E9 Configuration Properties Command Line copy .\debug\CustomPlugin.dll c:\Mach3}
General Description
Debugging Excluded From Build Mo
3 cic++
[Z3 Linker

[Z3 Resources

(23 Browse Information

=3 Build Events
Pre-Build Event
Pre-Link Event

[Z3 Custom Build Step
[Z3 Web Deployment

Command Line
Specifies a command line forthe post-build event tool to run.

oK l:I Cancel | s | Hep |

Repeat this process for Release builds except you should change the Command Line to:
copy .\release\CustomPlugin.dll c:\\Mach3\plugins

In order to avoid being puzzled by accidentally testing a Release build when you were
expecting a Debug build (and DbgMsg output of course) add this to the
‘myPositInitControl” function in CustomPluginimpl.cpp.

#ifndef DEBUG
RelMsg(("Release build CustomPlugin"));

#endif

You will only see this message if you are running a release build of the CustomPlugin.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding a Utility Library

It is desirable to have a single place for ‘helper’ or utility functions to be coded. Since
we need at least one such helper function for the next section, we will create this now,
and add to it as we need to.

Use the ‘File->New’ menu to create a ‘Utility.cpp’ and a ‘Utility.h’ file.

File | Edit View Project Build Debug Tools Window Help

MNew P [5] Project.. Ctrl+Shift+N
Open » Hiﬂ File... . CErl+n |
Close s Blank Solution...

] Add New Ttem... Ctrl+Shift+A - — =]

B isti it+AIL+

3 Add Existing Ttem Shift+Alt+A - P ()
Add Project 3

= Open Solution...

3 festDlg message handlers
% Close Solution
H Save PlLIgiHTEStD|g.C|'J[J Ctrl+5 inTestDlg: : OnBnClickedOk |

Save PluginTestDIg.cpp As... (("ONBRClickedOk entry™)

Advanced Save Options...

b-—'lt_ll Save A“ Ctrl+Shift+5 'ldDWI:SW_:'].IDE] H
Source Control » l("onBnClickedOk exit™)):
] Fage Setup...
i mnn +
& Print Cir+p inTestDlg: :OnBnClickedCan
Recent Files (2
Recent Projects p [("OnEnClickedCancel entr
Exit ndow (SW_HIDE) ;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

New File

Categories: Templates: IEJ
{1 General =t
43 Visual C++ =
-{13 Script

C++ File
(.cpp)

Bitrmap File
(.brmp)

Resource
Templa...

Header File Midl
(.h)

[

File (.idl)

H
HEER
R

Cursor File Icon File

(.cur)

(.ico)

Creates a C++ source file.

Open }! 'I

Cancel

Help

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Add the text ‘// Utility.cpp’ then save the file. The file will initially be named
‘Sourcel.cpp’ but you need to change that to “Utility.cpp’.

@2 CustomPlugin - Microsoft Visual C++ [design] - Sourcel*
File Edit View Project Build Debug Tools Window Help
En-SEHE D@ o8B) vebug ~ @ Froto i
:E | EEZ2 4% %%,
| stDlg.cpp | CustomPluginImplh | RemConsSrvLib.cpp | CustomPlugin.rc (...IN_TEST - Dialog) | Sourcel® 4 b X
[i = // Utility.cpp =
k Pointer L —
Button
Check Box
Edit Control
Combo Box
List Box
Group, Box
Radio Button
' Stafic Text
Picture Control
Horizontal Scral...
Wertical Scroll Bar
Slider Control
Spin Contral

Progress Control
Hot Key.

List: Control

Tree Control

Tab Control
Animation Cont...

WS IR s AU 20

Clpboard Rng | v | -
3

General |4 |

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Use the ‘File->Save’ menu. Select ‘Save Sourcel’.

Eile | Edit View Project Build Debu

Hew b
Open [3
Close

Add New Ttem... Ctrl+Shift+4A
Add BExisting Ttem... Shift+Alt+A
Add Project b

Open Solution...

Close Solution

ﬂ S].x S]x"

Save Sourcel o Ctrl+5
by

Save Sourcel As...

Advanced Save Options...
Save Al Ctrl+Shift+5

Source Control 3
Fage Setup...
Erint... Ctrl+P

I B

Recent Files 3
Fecent Projects 4
Move Sourcel into Project b

Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now change the file name to ‘Utility.cpp’ and then press ‘Save’.

Save File As X|
Save in: |@ CustomPlugin LI - - B X 0 ~ Tools~
Debug
-4 I Release
Histo res
v lef] CustomPlugin.cpp
lef] CustomPluginImpl.cpp
,0,3.
ef] dbg.cpp
My Projects lef] Mach3Ctrl.cpp
le] PluginTestDlg.cpp
= ef] stdafx.cpp
[J lef] XMLProfile.cpp
Desktop
_* |
Favorites
[=]
My Network File name: |Utility.cpp - g3 -
Places I J 22°
Save as typ |C++ Source Files [*.cc;*.cp|:|;*.c-:(;*.inl;*.tlh;*.tli]j Cancel .,
Repeat this process but select ‘Header File (.h)’ instead. Name this file ‘Utility.h’
x|

Categaries: Templates: IEJ
~{_1 General =
43 Visual C++ =
-~ script C++Fie DIEEEEER Midl File (.idl)

{.cpp) (.h)
«:I I s
HEE
Bitrmap File Cursor File Icon File
(.brmp) (.cur) (.ico)
j
Resource
Templa...

Creates a C++ header file.

Open ['I Cancel Help

Copyright James W. Leonard — Leonard CNC Software

The file creation wizard does NOT make the files you just created part of the

Mach3 Plugin Development Tutorial

CustomPlugin project, so you must add them yourself. Use the ‘Project->AddEXisting
Item’ menu to open a dialog where you can select these files to be added to the current

project.

Project | Build Debug Tools Window

= Add Mew em...

“# Add Class...
<% Add Resource...

Ctrl+Shift+4

|1 Add Existing Trem... .Shift+Alt+A

fos

43

1 MNew Folder

Add Web Reference...
Set as StartUp FProject

CustomPlugin Properties...

Press the ‘Open button to finish adding the new files for the Utility library to the project.

x|
Look in: |lf—_"| CustomPlugin LI - - o W ~ Tools~
Debug lef] stdafx.cpp
ﬁ, Release Estdafx.h
' : res Ut
History @activdhg.h W
s lef] CustomPlugin.cpp ef] XMLProfile.cpp
| j [h] CustomPlugin.h [h] XMLProfile.h
My Projects 5l CustomPlugin.rc
[¢f] CustomPluginImpl.cpp
r [h] CustomPluginImpl.h
Q /¢ dbg.cpp
Desktop [h] dbg.h
lef] Mach3cCtrl.cpp
[h] Mach3Ctrl.h
i, ef] PluginT estDlg.cpp
! Favorites @ PlUngEStDlg.h
[h] resource.h
[=]
] £
My Metwork File name: ~ -
1JIrP'Ial:v:as - I J —
Files of type I'-.-’i5ua| C++ Files (*.c; *.cpp; *.o0¢ *.co; *.tl; *.tlhj Cancel

[

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding Functions to the Utility Library

The first utility library function that will be needed is a function to get the HWND of
Mach3’s main window. This will be used in the next section to make Mach3 the ‘parent’
of a dialog. This makes the dialog owned by Mach3 and allows us to manage it’s lifetime
in terms of Mach3’s lifetime. We will call this function GetMach3MainWindow. In
general it is a good practice to name functions according to what they do. This is called
‘self documenting code’. Here is the code for GetMach3MainWindow.

HWND GetMach3MainWindow (VOID)

{
HWND m3 = NULL;

m3 = FindWindow (NULL, "Mach3 CNC Controller ");
if (NULL != m3) {

DbgMsg (("found Mach3 window")) ;
}

return (m3) ;

In order to add this to the library, you must put a ‘function prototype’ in “Utility.h”. This
tells the Visual C++ compiler the details of how the function is to be called or invoked.
Here is the code for the “Utility.h” header file:

// Utility.h
#pragma once

HWND GetMach3MainWindow (VOID) ;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Here is the “Utility.cpp” source code file:

// Utility.cpp
// Utility / helper functions for Mach3 plugin authoring

#include "stdafx.h"

#include "Utility.h"
#include "dbg.h"

HWND GetMach3MainWindow (VOID)

{
HWND m3 = NULL;

m3 = FindWindow (NULL, "Mach3 CNC Controller ");
if (NULL != m3) {

DbgMsg (("found Mach3 window")) ;
}

return (m3) ;

Please note the addition of the three header files at the beginning. They are:

#include "stdafx.h"

#include "Utility.h"
#include "dbg.h"

These are needed for correct compilation of this library source file.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding A Dialog To The Custom Plugin

Many plugins will require a dialog for configuration data, or other uses. In order to add a
dialog and a class file to use it you start by creating the dialog with the resource editor.

Project | Build Debug Tools Window
% Add Class...
|% Add Resource... |-,

it Add New Ttem... %Ctrl+5hi1‘t+ﬂ
=i Add Existing Item... Shift+Alt+A

&

1 Mew Folder

Add Web Reference...
Set as StartUp Project

CustomPlugin Properties...

x|

Resource type: New I
@ Accelerator -
i Bitmap Import...

- B Cursor

Gl Dizlog | Custom...
31 HTHL Cancel
[Icon
B Menu Help

abe String Table
=4 Toolbar
Version

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

CustomPluginImpl.cpp | dbg.h | mach3.th | CustomPlugin.r...LOG1 - Dialog)*® | 1 X

U...|....|....|....|....|....d
x|
]
- QoK
- Cancel
= [5
=
| |

Change the properties of the dialog so the caption (title bar) says ‘Plugin Test” and the ID
of the dialog is IDD_PLUGIN_TEST.

XMW e

Insert ActiveX Control...
% Add Class...

¥ Check Mnemonics
| Properties I |

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

There are three properties that need to be changed. They are “Caption”, “Center” and
“ID”. | am showing each one individually.

x
| IDD_DIALOG1 (Dialog) IDIgEditor ~|
=[4[E] # m

3D Look False -

Absolute Align False J

Accept Files False

Application Window False

Border Dialog Frame

Plugin Test| T

Center False

Center Mouse False -
Caption
Specifies the text that will be displayed in the dialog's
title bar.
X
| IDD_PLUGIN_TEST (Dialog) IDIgEditor |
z[E[E] 7 =

20 Look False o

Absolute Align False _|

Accept Files False

Application Window False %

Border Dialog Frame

Caption Plugin Test

Center True ;l

Center Mouse False -
Center
Centers the dialog in the monitor that contains the owner
window.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

x|
| IDD_DIALOG1 (Dialog) IDIgEditor |
= 4il[=] 7 =
Font(Size) M5 Shell Dlg(8) =
Horizontal Scrollbar False
ID IDD_PLUGIN_TEST |
Layout RTL False _|
Left Scrollbar False
Local Edit False
Maximize Box False
Menu -
ID
Specifies the identifier of the dialog resource.

Close the properties editor by clicking on the ‘X’ in the upper right hander corner. This
will save all the changes that you made.

Adding a MFC Class to Use the Dialog

In order to display the dialog and use the buttons and other controls that we will add we
must create a C++ class that is derived from the MFC base class ‘CDialog’. 1 will add a
reference section with links to what all that means, so for now just follow along and we

will end up with a reliable modeless dialog that can use both the Intrinsic functions and

the Object Model methods and properties.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Right click on dialog and select ‘Add Class’.

u...l....l....l....l....d

Plugin Test x|
=

- OK
- Cancel

a -
: & Cut

- B3 Copy
= IR Faste

& | Delete

Insert Activex Control...

[“¢ AddClass.. |
“y Add Variable... 43

= align Lefts

i | Align Tops

9’ Check Mnemonics
Properties

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

This screen will appear. Select “CDialog” for the “Base class” then enter
CPluginTestDlg in the “Class name” edit box. Note that it is a Microsoft convention that
all class names should begin with ‘C’ (it means class). It is a good idea to follow this.
After you have entered the class name you will see that the “.h file” and “.cpp file” edit
boxes are now filled in for you. Press finish to create these files.

MFC Class Wizard - CustomPlugin

Welcome to the MFC Class Wizard

This wizard adds a dass that inherits from MFC to your project. Options may change depending
on the base dass selected.

Class name: DHIML resource 10

|cPluginTestDIg IDR._HTML_PLUGINTESTDLG

Base dass: T file:

|CDiaIug ;I |: uginTestDlg.him

Diglog I0: Automation

h file:
IF‘IuginTestDlg.h

.cpp file: ype I:
IPIuginTesﬁZ)Ig.cpp _I |C~ stomPlugin. PluginTestDlg
™| Active accessibility

This results in two new files, PluginTestDIlg.cpp and PluginTestDIg.h. They will be used
to create a modeless dialog.

What is a ‘modeless dialog’? It is a popup screen that sits on top of the Mach3 main
screen. It is ‘modeless’ since it does not stop you from using the menus and buttons on
Mach3’s main screen. This is the best way to enter data from a plugin, but modeless
dialogs are much more trouble to manage. So, we are establishing a set of rules for
creating and managing these dialogs inside of a Mach3 plugin.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

PluginTestDIg.cpp needs to have additional headers (.h files) added for integration with
the CustomPlugin project and to use the DbgMsg system. When you are done this
section of PluginTestDIg.cpp looks like this:

#include "stdafx.h"
#include "resource.h"
#include "CustomPlugin.h"
#include "PluginTestDlg.h"
#include "dbg.h"

If the AppWizard adds a redundant header “.\plugintestdlg.h” it may be
removed or left in as you wish. Other that these headers,
“PluginTestDlg.cpp” can be used as it was generated by the AppWizard.

The “PluginTestDIg.h” file does not need any changes at this time.

Since we have added four new files (Utility.cpp, Utilty.h PluginTestDlg.cpp and
PluginTestDIg.h) it is a good idea to try a test build now to make sure that all has gone
well for these steps. If it has not, please review this section up to this point to see what
has gone wrong.

If all went well with your test build, now we can add a little more code and make the
Plugin Test dialog display from Mach3.

The first things we must add are the declarations for the HWND and CWnd that will hold
the Mach3 main window handles. The HWND is a fundamental windows ‘type’ and the
CWhnd is a MFC class that encapsulates a HWND and provides added functionality,

In the file CustomPluginimpl.cpp add these lines after the header files section:

HWND mach3Wnd;
CWnd mach3CWnd;

Now we must add the declaration of the Plugin Test dialog class so that
we can make an ‘instance’ of it. We will explain further at that
point.

CPluginTestDlg *dlg;

We also add the header file “Utility.h” to the header file section so

we can use the utility function “GetMach3MainWindow”. And we also need the
header file “PluginTestDlg.h” to declare the CPluginTestDlg class itself.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Here is the finished upper section of CustomPIuginImpI.cpp.

// CustomPluginImpl.cpp

#include "stdafx.h"

#include "resource.h"

#include "TrajectoryControl.h"
#include "Machd4View.h"
#include "Engine.h"

#include "rs274ngc.h"

#include "XMLProfile.h"

#include "CustomPluginImpl.h"
#include "PluginTestDlg.h"
#include "Utility.h"

#include "dbg.h"

#include <mmsystem.h>
#include <math.h>

HWND mach3Wnd;
CWnd mach3CWnd;

CPluginTestDlg *dlg;

[] e

In the “myPostInitControl()” function in CustomPluginimpl.cpp we add the following
code. This will make a new ‘instance’ of the CPluginTestDlg class and call the “Create()
method to create an invisible dialog box. We want the dialog to be invisible for now so
that we can show and hide it on command from Mach3.

void myPostInitControl ()

{
// called when mach fully set up so all data can be

// used but initialization outcomes are not affected
DbgMsg (("myPostInitControl entry"));

mach3Wnd = GetMach3MainWindow () ;

mach3CWnd.Attach (mach3Wnd) ;

dlg = new CPluginTestDlg;

dlg->Create (IDD_PLUGIN TEST, &mach3CWnd) ;

DbgMsg (("myPostInitControl exit"));

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial
Let’s look at each line of code in turn since this is a very important function and the first
real programming that we have done in this tutorial.

DbgMsg (("myPostInitControl entry"));

This simply outputs the string “myPostInitControl entry” to the DebugView console so
that we know where we are in the flow of the plugin initialization.

mach3Wnd = GetMach3MainWindow () ;

This calls the utility function “GetMach3MainWindow()”” which looks up Mach3’s main
window handle (HWND) and then returns it to us here.

mach3CWnd.Attach (mach3Wnd) ;

This takes the HWND that was returned and attaches it to the CWnd class object. Now
the CWnd is fully prepared for making a new “instance” of CPluginTestDlg.

dlg = new CPluginTestDlg;

This uses the “new” operator (built-in C++ language feature) to allocate memory on the
“heap” for “dlg” which is an “instance” of CPluginTestDlIg.

dlg—>Create(IDD_PLUGIN_TEST,&mach3CWnd);

This calls the “Create” object method which creates the actual dialog box from the
template named by IDD_PLUGIN_TEST. This template is in the file “CustomPlugin.rc”
and was created when we created dialog at the beginning of the “Adding A Dialog To
The Custom Plugin” section.

DbgMsg (("myPostInitControl exit"));

This outputs the string “myPostInitControl exit” to the DebugView console so that we
know that we are done with the plugin initialization.

This takes care of ‘startup’ processing for our modeless dialog. Now we need to look at
‘shutdown’ processing since we always need to clean up our use of resources and
memory. In this case failure to do will crash Mach3 on exit (AND maybe give you the
Blue Screen Of Death also).

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

In “myCleanUp” we release all the memory and resources used by the modeless dialog
that we created. Here is what it looks like.

// Used for destruction of variables prior to exit.
// Called as Mach3 shuts down.

void myCleanUp ()

{
DbgMsg (("myCleanUp entry"));

dlg->DestroyWindow () ;
mach3CWnd.Detach () ;
delete dlg;

DbgMsg (("myCleanUp exit"));

And this deserves a line-by-line explanation also.

DbgMsg (("myCleanUp entry"));

This is output to DebugView and shows that this function has been entered.

dlg->DestroyWindow () ;

This destroys the modeless dialog box but does not free the memory for the “dlg” object.

mach3CWnd.Detach () ;

This detaches the Mach3 main window handle from the Cwnd that was used to create the
dialog box. If this is not done Mach3 will crash on exit.

delete dlg;

This free the memory for the CPluginTestDlg object that was allocated by the
statement “dlg = new CPluginTestDlg”. ‘new” and “delete” MUST always be used
in pairs or memory will NOT be freed. This is called a “memory leak”.

DbgMsg (("myCleanUp exit"));

This is output to DebugView and shows that this function is now complete and will exit..

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding Button Handlers to the Dialog

In order to use the buttons on the plugin test dialog you must add “Event Handlers” to the
CPluginTestDlg class. Open the source editor and display the ‘Plugin Test’ dialog.
Right click on the ‘OK’ button and select ‘Add Event Handler’.

Plugin Tes X|
N m
ok =
& Cut
C |
ance Copy
B2
¥ Delete
| Add Event Handler... o

Insert ActiveX Cnntrnli{f
Add Class...
Add variable...

T

Size to Content

o

=]
=
=

Check Mnemonics

Gl <8

Properties

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Make sure that you have “BN_CLICKED” and “CPluginTestDlg” selected. Press the
“Add And Edit” button when you are ready.

Event Handler Wizard - CustomPlugin x|

Welcome to the Event Handler Wizard

This wizard adds a menu or accelerator command handler or dialog control event handler to the
dass of your choice

Commend name

Jipok

Message type: Class list:
- CCustomPluginApp
BM_DOUBLECLICKED C¥MLProfile
BIN_KILLFOCUS ;l

Function handler name:
JonBnClickedok

Handler description:

I’ cates the user dicked a button

&ddw Editl Edit Code | Cancel | Help
L)

Edit the AppWizard generated code so that ‘OnOk()’ is not called. Instead we will just
hide this window for both the ‘OK’ and ‘Cancel’ buttons.

void CPluginTestDlg: :OnBnClickedOk ()
{
DbgMsg (("OnBnClickedOk entry"));
ShowWindow (SW_HIDE) ;

DbgMsg (("OnBnClickedOk exit"));

Add a handler for the ‘Cancel’ button and put the same changes in the
‘OnBnClickedCancel’ handler code.

void CPluginTestDlg: :0nBnClickedCancel ()
{
DbgMsg (("OnBnClickedCancel entry"));
ShowWindow (SW_HIDE) ;

DbgMsg (("OnBnClickedCancel exit"));

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

The last thing we have to do before we can test all of this is to modify the “myConfig”
function in CustomPluginimpl.cpp. Here is what looks like.

// Called to configure the device
// Has read/write access to Mach XML profile to remember what it needs to.

void myConfig (CXMLProfile *DevProf)

{
DbgMsg (("myConfig entry"));

dlg->ShowWindow (SW_SHOW) ;

DbgMsg (("myConfig exit"));

Ok, we have the standard DbgMsg entry and exit trace functions. Not much more detail
needed for those.

dlg->ShowWindow (SW_SHOW) ;

This line shows (makes visible) the modeless dialog by calling the ShowWindow method
in the CWnd base class for CDialog.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Testing The Dialog

Now it is time to test your dialog. Build the Debug version of the CustomPlugin.dll and
copy it to the Mach3 plugins folder like you did earlier. If all was well with the build and
copy you can then start Mach3 and open the “Plugin Control and Activation” dialog in
Mach3. If you press the big yellow CONFIG button on the right hand side AND
everything was done well you will see your modeless dialog pop up in the center on the

Mach3 screen.

x|

Enabled PlugIn Name Config
ef CustomPlugin-CustomPlugintype-PlugIn-—James-... CDNFIG%
¥ Digitizer-Digitizing-PlugIn-—A.Fenerty-Ver-1.0a CONFIG
ef Flash-FlashScreen-SWF-FlugIn-A.Fenerty--B.-Ba... | CONFIG
| ¥ JoyStick-JoyStick-PlugIn--Art-Fenerty-Ver-1.0a CONFIG
| Probing-3d-Digitising-Fenerty-Barker-Version-2.0... | CONFIG
L Video---B.Barker-Ver-1.0 CONFIG

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

This is what you should see. Since this is a modeless dialog you can now close the
“Plugin Control and Activation” dialog without affecting the “Plugin Test” dialog at all.

PlugIn Control and Activation x|

Enabled PlugIn Name Config

ef CustomPlugin-CustomPlugintype-Plugln-—James-... | CONFIG

o Plugin Test x| CONFIG
| ef E a... CONFIG

4 CONFIG
1 CHF‘ICE‘

4 .0... CONFIG

ef CONFIG

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Adding Object Model Support

The Mach3 Object Model is the set of programming interfaces and data that supports the
Mach3 script facility (the “macros™). Support has been added for external program
access to this object. This also works for plugins and now gives access to ALL of the
programmability that Mach3 offers the system integrator / customizer.

Mach3 has an embedded TypeL.ib that completely define all of the methods and
properties that the Mach3 object model makes available. In order to use this in the
CustomPlugin we need to create the header (.h) files that define these interfaces and
provide helper functions for using them. We start with the “Project->Add Class” menu.

Project | Build Debug Tools Window

Gl

P‘l; Add Class... e

“# Add Resource...

= Add New em... Ctri+Shift+A
:3H Add Existing Ttem... Shift+AlE+A
* New Folder

Add Web Reference...
Set as StartUp Project

CustomPlugin Properties...

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

We now can specify ‘MFC Class From TypeLib”.

Add Class - CustomPlugin

Categories:

Templates:

H-53 Wisual C++

o oase W
& v %

ATL Server ATL Simple Generic C++
Web Service Object Class

F F
MFC Class MFC Class MFC Class

From A... From
Typelib

M e i

4 = ATL
=T
MFC ODBC Windows WMI Event
Consurmer Form (.NET) Provider

b
I—l e L — —I

Adds an MFC class based on a typelib.

Hanmes |

Locaticm: |

Erowise,,. |

Open %J Cancel Help |

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

This display this dialog. Select the “Add class from File” radio button and then press the
button to the right of the “Location” edit box.

|Add Class From Typelib Wizard - CustomPlugin

Welcome to the Add Class From Typelib Wizard
This wizard adds dlasses to your project based on interfaces selected from a type library.

Add dass from: Available type libraries:
" Reqgistry % File |

Location:

Interfaces: Generated dasses:

m

Class:

= e] M

Finish Cancel | Help |

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Select the file ‘Mach3.exe’ and then press the “Open” button

VS Wizards Select File x|

Look in: I@ Mach3 ;I S B X ~ Tools~
-0 Addons i DriverTest.exe | %) mfcgo.dll |%] videoOC
ﬁ, L) Bitmaps L@dxfreader.ncx L’QMFCSDENU.EIII
Hstory |—Brains %] ENABLE40.DLL &) mfcaou.dll
) Flash ¥ G76_threads.exe [mfcmao.dll
.0 GCode [GetPortAddress.exe |%] mfcmaou.dll
Y, - .
j I Help %] gISim.dll F2 mssruntime. exe
My Projects L) macros 4] GrabberDLL.dIl L’QmwcmSD.dll
I PlugIns (& Grex-Loader.exe |%] msvepao.dil
— SETUP EIm.exe 4] msvepso.di
Bﬂ L) Subroutines (22 KeyGrabber.exe | %) msverso.dil
Desktop |- TurnAddons [“A LazyCam.exe L’ﬂ msvert.dll
i) xmlbackups i® LazycamInstall.exe || NTGraph.ocx
e Addons.exe . M3Plug.exe Frem.exe
i, 2] atl71.dll Mach3. exe %] SMRL.dII
Favorites RE3Bitmaps.exe %] Mach45trings.dll %] SMTX.0cx
|4 dinputs.dl E2macros.exe |4 videoOCX.0cx
=
f= < I I _PI
My Network File name: - .
YPIaces - I J ﬂ%—'
Files of type ITw:ueLib Files (*.exe; *.dl: *.olb: *.thh: *.00x) j Cancel |

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now you can select both available interfaces “IMach4” and “IMyScriptObject” and add
then to the “Generated Classes” window with the “>>" button

Add Class From Typelib Wizard - CustomPlugin

Welcome to the Add Class From Typelib Wizard
This wizard adds dasses to your project based on interfaces selected from a type library.

Add dass from: Available type libraries:
{~ Registry {* Fie I —
Location:
|C: \Mach3\Mach3.exe| _I
Interfaces: Generated dasses:
IMach4 Ll CMach4

ol

<
«

Clazs: File:
{cMyScriptobject fcMyScriptobject.h _|

: Finish J\]._,,J Cancel | Help |

Press the “Finish” button and two files will be generated, “CMach4.h” and
“CMyScriptObject.h”. Add these files to the CustomPlugin project. These files will be
used by the Object Model Library that we will now create.

Since you now have quite a bit of experience with Mach3 plugins we will start referring
to sections that have come before. Initially this will all be very similar to what was done
to add the Utility Library support, so see that section for how to create new files, name
them and add them to the CustomPlugin project. The files that you will create will be
“Mach30bjectModel.cpp” and “Mach30ObjectModel.h”.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

After you create these files add this code to the “Mach30bjectModel.h” file.

// Mach30bjectModel.h
// This library allows access to the Mach3 scripting engine
// object model

VOID
VOID
BOOL
BOOL
BOOL
BOOL
BOOL

Mach30bjectModelStartup (VOID) ;
Mach30bjectModelShutdown (VOID) ;
LoadGcodeFile (CHAR *filePath);
RunGcodeFile (CHAR *filePath);
CloseGcodeFile (VOID) ;
CycleStart (VOID) ;

PushOEMButton (short button);

And add all of this code to the “Mach30bjectModel.cpp” file.

// Mach30bjectModel.cpp
// This library allows access to the Mach3 scripting engine
// object model

#include "stdafx.h"

#include "CMach4.h"

#include "CMyScriptObject.h"
#include "Mach30ObjectModel.h"
#include "Mach3DRO.h"
#include "Mach3Button.h"
#include "dbg.h"

CMach4 machi4;
CMyScriptObject scripter;

bool

connected = FALSE;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

VOID Mach30bjectModelStartup (VOID)

{
static const IID IID IMyScriptObject = { Oxfld3eeb6c, Oxab32, 0x4996,

{ Oxb2, 0x70, Oxf4, 0x15, Ox6l, 0x3f, 0x5b, O0xa3 } };
CLSID clsid;
PushDbgMode () ;

DbgOn
// DbgOff

CoInitialize (NULL) ;
LPUNKNOWN lpUnk = NULL;
LPDISPATCH lpDispatch = NULL;
HRESULT res;
DbgMsg (("Mach30bjectModelStartup entry"));
try |
if (CLSIDFromProgID(OLESTR ("Mach4.Document"), &clsid) == NOERROR) {

if (res = GetActiveObject (clsid,NULL, &1lpUnk) == NOERROR) {

HRESULT hr = lpUnk->QueryInterface(IID IDispatch,
(LPVOID*) &1lpDispatch) ;

lpUnk->Release () ;

if (hr == NOERROR) {
mach4 .AttachDispatch (1pDispatch, TRUE) ;
lpDispatch = machd4.GetScriptDispatch();
scripter.AttachDispatch (lpDispatch, TRUE) ;
connected = TRUE;

DbgMsg (("Mach3 control OK"));

}
catch(com error é&e) {

com_error msg(e);

}
DbgMsg (("Mach30bjectModelStartup exit"));

PopDbgMode () ;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

VOID Mach30bjectModelShutdown (VOID)

{
PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("Mach30bjectModelShutdown entry"));
CoUninitialize();
DbgMsg (("Mach30bjectModelShutdown exit"));

PopDbgMode () ;

BOOL LoadGcodeFile (CHAR *filePath)

{
BOOL retVal = FALSE;

PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("LoadGcodeFile entry"));
try {
DbgMsg (("LoadGcodeFile: filePath = %s",filePath));

scripter.LoadFile (filePath) ;
}

catch(com error &e) {

com _error msg(e);

}

DbgMsg (("LoadGcodeFile exit"));
PopDbgMode () ;

return (retval) ;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

BOOL RunGcodeFile (CHAR *filePath)

{
BOOL retVal = FALSE;

PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("RunGcodeFile entry"));
try {
DbgMsg (("RunGcodeFile: filePath = %s",filePath));

scripter.LoadRun (filePath) ;
}

catch(com error &e) {

com error msg(e);

}
DbgMsg (("RunGcodeFile exit"));
PopDbgMode () ;

return (retval) ;

BOOL CloseGcodeFile (VOID)

{
BOOL retVal = FALSE;

PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("CloseGcodeFile entry"));
try |

scripter.DoOEMButton (CLOSE GCODE) ;
}

catch(com error &e) {

com_error msg(e);

}
DbgMsg (("CloseGcodeFile exit"));
PopDbgMode () ;

return (retval);

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

BOOL CycleStart (VOID)

{
BOOL retVal = FALSE;

PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("CycleStart entry"));
try {

scripter.DoOEMButton (CYCLE START) ;
}

catch(com error é&e) {

com_error msg(e);

}
DbgMsg (("CycleStart exit"));
PopDbgMode () ;

return (retval) ;

BOOL PushOEMButton (short button)

{
BOOL retVal = FALSE;

PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg (("PushOEMButton entry"));
try {
DbgMsg (("PushOEMButton: button = %d",button));

scripter.DoOEMButton (button) ;
}

catch(com error &e) {

com_error msg(e);

}
DbgMsg (("PushOEMButton exit"));
PopDbgMode () ;

return (retval) ;

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Using the Intrinsics and Object Model to Actually Do
Something

Well, that is probably the most whimsical section title so far but a perfect description!
We are going to add buttons and code to our test modeless dialog to make Mach3 ready
to run, then load and run the infamous roadrunner.tap GCODE file.

I FIXIT
Mach3ObjectStartup

Mach30ObjectShutdown

First, open the dialog and add three new buttons. They will be labeled “Reset”,
“Load RR” and “Run RR”.

File | Edit View Project Build Debug Tools Window Help
News P o - BB |) pebug
| Open » | =3 Project.. Cirl+shift+0
Close % Project From Web...
i Add New Ttem... Ctrl+Shift+A (@ Filew. [ctrl+0
2 Add Existing Item... Shift+alt+A [& File Frnr#Wgh...
Add Project 3 Convert...
= Open Solution... ripter.DoOEMButton (CLOSE
= Close Solution
Save CustomPlugin.rc Ctri+S | com error ze)
Save CustomPlugin.rc As...
Gl Save Al Ctrl+Shift+g ~ [-=r=or_msgi=)s
Source Control 3
@ [("ClozseGoodeFile exit™))
=i Mode () ;
Recent Files b
Recent Projects k [retval):
Exit

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial
The dialog is contained in the file CustomPlugin.rc

| Open File X|

Look in: |@ CustomPlugin LI - - o X ~ Tools~
Debug [n] Mach30bjectModel.h
ﬁ, Release ef] PluginTestDlg.cpp
History res h] PluginTestDlg.h
[h] activdbg.h h] resource.h
s [h] CMach4.h ef] stdafi.cpp
j [h] CMyScriptObject.h h] stdafx.h
|| My Projects lef] CustomPlugin.cpp &) Utility.cpp
[h] CustormPlugin.h] Utility.h

&

e CustnmPIuQinImpl.cpp
[h] CustomPluginImpl.h
¢ dbg.cpp

[h] dbg.h

[h] Mach3Button.h

: Desktop

E

ef] XMLProfile.cpp
[h] XMLProfile.h

Favorites @ Mach3DRO.h
| ef] Mach30bjectModel.cpp
=
=
My Network File name: - Qpen -~
' Places I J —l};L_p

Files of type I'-.-’i5ua| C++ Files (*.c; *.cpp; *.o0; *.cc; *.tli; *.tlhj

Cancel

[

When you open CustomPlugin.rc you will see this dialog. Double click on

IDD_PLUGIN_TEST .

=-F CustomPlugin
=3 CustomPlugin.rc
=7 Dialog

H-[Z3 Version

-

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now you can stretch the “Plugin Test” dialog so that we can easily add some new
buttons.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

After stretching the “Plugin Test” dialog select the ‘Button’ tool from the toolbox on the
left.

Dialog Editor | ﬂ
k Pointer

| J Button

X Check Box

abl Edit Control
EH Combo Box
=H List Box
m Group Box

' Radio Button
An Static Tewt

Click on the dialog where you want your button to be located. The default button size is
50 x 14 but I like 50 x 16 usually so | make my buttons a little taller.

=
Button1 QK I
_ o |

Cancel

Button2

Button3

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

After you have added all three buttons you need to see the button caption and the ID.
These are both button properties, so we right click on the first button and select
“Properties” from the menu.

Plugin Test x|
[| [|
' oK |

m Buttonl
Cancel

"
Button2

Cut

Copy

Button3

XM B s

Delete

Add Event Handler...
Insert Activex Contraol...
“# Add Class...

Add Variable...

=

Size to Content [

T

o
=
=

Check Mnemaonics

(|

Properties [:\

W

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Set the caption of the first button to “Reset”.

Plugin Test x|
I: | |
® Buttonl | QK
_concel |
Button2
Button3
x|
| IDC_BUTTON1 (Button Control) IButtonEditor v |
= [4i][=] # |
[(Name) IDC_BUTTON1 (Button Co&]
Accept Files False
Bitrnap False |
Caption Reset
Client Edge False
Default Button False
Disabled False
Flat False -
Caption
Specifies the text displayed by the contral.

And set the ID to IDC_RESET.

x|

| IDC_BUTTON1 (Button Control) IButtonEditor |

= EIE2l=

Flat False -
Group False
Help ID False
Horizontal Alignment Default
Icon False | |
Dc_RESET | =
Madal Frame False
Multiline False -
1D
Specifies the identifier of the control.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Add an event handler for the “Reset” button.

Plugin Test x|

[| [|
B Reset I: | Ok
s w| & Cut
C |

LoodR{ B Copy _Cned |

R RJ:E

un

7 Delete

| Add Event Handler...
Insert ActiveX Control...
% Add Class...
Add Variable...

k-

Size to Content

o

=
[=]
—+|

Check Mnemonics

Gl <8

Properties

Select BN_CLICKED and CPluginTestDIg then press “Add and Edit”.

Event Handler Wizard - CustomPlugin

Welcome to the Event Handler Wizard

This wizard adds a menu or accelerator command handler or dialog control event handler to the
dass of your choice,

Commend name;

Jioc_RESET
Message type: Class list:
- CCustomPluginApp
BM_DOUBLECLICKED C¥MLProfile
BN_KILLFOCUS =
CMach4
Function handler name: CMySeriptObject

|onBnClickedreset

Handler description:

|I|'u:|i-:ates the user dicked a button

Add and Editrl Edit Code | Cancel

| Help

i

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Now you can add the code to make this button perform a “Reset” operation on Mach3.
This is done by using the DoButton Intrinsic to push the Mach3 “Reset button”.

void CPluginTestDlg::0nBnClickedReset ()
{

DoButton (MACH3 RESET) ; // Reset (1021)
}

Now set the button captions and ID values for the next two buttons. They will be:
Button 2 “ Load RR” IDC_LOAD_ RR
Button 3 “Run RR” IDC_RUN_ RR

Then add event handlers for these buttons.

void CPluginTestDlg: :0nBnClickedLoadRr ()
{

scripter.LoadFile ("C:\\Mach3\\Gcode\\RoadRunner.tap") ;
}

void CPluginTestDlg: :0nBnClickedRunRr ()
{
DoButton (CYCLE START) ;

}

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Finished File Sets

There are xxx finished files sets. They represent the progress made at each stage of this
tutorial.

CustomPlugin_V01.zip is the tutorial up to doing the first release build.

CustomPlugin_V02.zip is the next steps to add a modeless dialog.

To Be Enhanced

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Plugin Development Reference

This section documents the currently available intrinsic functions and object model
methods and properties that can be used to develop Mach3 plugins.

Mach3 Plugin Intrinsic Functions

A Mach3 plugin intrinsic is a function that is initialized by Mach3 when the plugin is
loaded and that may be called directly. Note that the names of the intrinsics are arbitrary,
|.E. they are the named function pointers declared that are set to the internal functions in
Mach3. The ‘Set’ functions that are exported from the plugin DLL are NOT arbitrary
names since Mach3 needs to ‘soft’ link to the functions in order to set the function
pointers. This list will document the standard function pointer names that were originally
conceived by John Prentice. It also shows the associated exported DLL functions.

Function Pointer Exported Function
DoButton SetDoButton
SetDRO SetSetDRO
GetDRO SetGetDRO
SetLED SetSetLED
GetLED SetGetLED

Code SetCode

These intrinsic are used by just calling them as if they were a function in the current
source code. L.E. DoButton(CYCLE_START); emulates a ‘push’ (mouse click) on the
Cycle Start button on Mach3’s main screen.

Each of these intrinsics is documented here

DoButton(SHORT button)

Pushes the button that is specified by the parameter ‘button’. See the list of button codes
for details as to this parameter.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

SetDRO(SHORT dro, DOUBLE value)

Sets the value into the Mach3 DRO specified by the dro parameter. Note that you
CANNOT set the system DROs in this manner. You can only set USER DROs with new
values. Mach3’s DROs reflect the internal state of Mach3 and only change when that
state changes. I.E. the X position DRO can only be affected by changing the current X
axis position. See the list of DRO codes for details as to the dro parameter.

DOUBLE GetDRO(SHORT dro)

Gets (returns) the current value of the specified DRO as a double precision floating point
value. In general you shoud try to use the engine block variables instead of reading the
DROs directly since the engine data is always current, the DROs may lag somewhat. See
the list of DRO codes for details as to the dro parameter.

To Be Enhanced

Mach3 Plugin Control and Utility Functions

Mach3 also calls exported functions in the plugin to perform various tasks such as start
up, shut down and reset. These functions are called asynchronously, I.E. Mach3 calls
them when the action is performed in Mach3 with no apparent delay. This is especially
important for the reset control function since this signals either the sudden stoppage of
Mach3 or it’s availability to start running.

To Be Enhanced

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Mach3 Engine Block Data

Mach3 sets a pointer to the Engine data in a variable named Engine. This allows you to
directly access the main Mach3 engine runtime parameters. You may freely read any
data contained here, but writing data back to the engine block must be done VERY
carefully (if at all).

To Be Enhanced

Mach3 Object Model

The Mach3 Object Model is a set of methods and properties that were originally
developed for the Mach3 scripting environment. Through the use of the ‘GetDispatchPtr
method all of the object model is available for use inside a Mach3 plugin.

To Be Enhanced

b

The DbgMsg Library

The DbgMsg facility is a set of functions that were developed for DLL debugging based
upon my experiences as a Windows CE embedded software developer. The main point
to grasp about the DbgMsg API is that it can be used as much as you wish throughout
your code without adding the overhead of the strings to a release build. 1.E. ALL
DbgMsg strings are completely removed from a release build giving zero added runtime
overhead in your product. There are three message functions in the library currently.
DbgMsg, RelMsg and ErrMsg. Here are the functions and notes on their use:

Note that the examples parameters are declared:

CHAR *string_parm; formatted with %s
WORD integer_parm; formatted with %d
LONG long_integer_parm; formatted with %ld
DOUBLE double_parm; formatted with %f

DbgMsg((“message with parms %s %d”,string_parm, integer_parm));
All three message output functions use the same parameters in the same way. DbgMsg

uses printf format specifications, all the formatting that you can find in the online MSDN
documentation is valid..

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

There are helper functions that make DbgMsg use much more versatile. They are:
PushDbgMode(), PopDbgMode(), DbgOn, DbgOff

These functions allow the selective disabling and enabling of message output and the
maintenance of the current output states across nested function calls.

DbgOff will stop DbgMsg and output. RelMsg and ErrMsg ALWAYS work, they are
unaffected. This applies to debug build only. In release builds only RelMsg,
com_error_msg and ApiDbgMsg will output messages to DebugView.

DbgOn will start DbgMsg output again.

PushDbgMode() saves the current debug mode on a ‘stack’. This allows you to change
the output mode in functions you are calling.

PopDbgMode() retrieves the current debug state from the ‘stack’. This restores the
LAST output mode that was in use when PushDbgMode() was called.

There are also two special debug messages for dealing with Windows API failures and
COM exception handling.

ApiDbgMsg((“message with parms %s %d”,string_parm, integer parm));

ApiDbgMsg is used to display your message and any parameters you format with this
message. It then calls GetLastError(), formats the error data returned and appends that to
your message. This is provided for ease of debugging Windows API use in the plugins.

com_error_msg(_com_error &e)

This error message routine is used in the ‘catch’ block of a ‘try — catch’ pair for
implementing exception handling for use with the Mach3 object model.

Now I will demonstrate the use of the DbgMsg Library in a sample pair of functions,
FunctionOne and FunctionTwo. FunctionOne is (hypothetically) called by plugin code to
p;rovide some service. FunctionTwo is called by FunctionOne to support FunctionOne in
some way.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

VOID FunctionOne (ImportantStuff *stuff)

{
PushDbgMode () ;

DbgOn
// DbgOff

DbgMsg ((“FunctionOne entry”));
stuff->nice number = FunctionTwo();
DbgMsg (("“FunctionOne exit”));

PopDbgMode () ;

DOUBLE FunctionTwo ()

{

DOUBLE a unique nice number = 0.0;
PushDbgMode () ;

// DbgOn
DbgOff

DbgMsg ((“FunctionTwo entry”));
a_unique nice number = (DOUBLE) (rand() * 3.1416));
DbgMsg ((“FunctionTwo exit”));

PopDbgMode () ;

Return(a unique nice number) ;

This pair of functions shows how the DbgMsg system should be used in plugin functions.
Note that even though FunctionTwo disable DbgMsg output with the DbgOff macro,

since it calls PushDbgMode() and PopDbgMode() the original operating mode of

FunctionOne is restored. So, we get all of the debug messages from FunctionOne and
none of the debug messages from FunctionTwo. If we want to see the debug messages

from FunctionTwo then we comment out DbgOff and uncomment DbgOn.

Copyright James W. Leonard — Leonard CNC Software

Mach3 Plugin Development Tutorial

Appendix A — Current Versions and Notes
11/17/07
Initial version of this document for:

Mach3 v2.48 and the SDK2.03.00

Appendix B — Mach3 Plugin Development Resources

Sysinternals DebugView is now owned by Microsoft. It is a free download and it may be
obtained here:

http://www.microsoft.com/technet/sysinternals/Miscellaneous/DebugView.mspx

Winzip is available for download at

http://www.winzip.com

It is highly recommended and will be used to compress files for all of the plugin tutorials
and commercial software deliveries. It currently costs $29.95.

Appendix C — Useful Websites

Here are some useful websites with tutorials and references for C++ and MFC (Microsoft
Foundation Classes)..

Microsoft MSDN online, the first place to look for the real documentation for the
Windows APl and MFC.

http://msdn2.microsoft.com/en-us/default.aspx

The CodeProject, a really great resource for all kinds of code and tutorials.

http://www.codeproject.com/

Copyright James W. Leonard — Leonard CNC Software

http://www.microsoft.com/technet/sysinternals/Miscellaneous/DebugView.mspx
http://www.winzip.com/
http://msdn2.microsoft.com/en-us/default.aspx
http://www.codeproject.com/

Mach3 Plugin Development Tutorial

Bear in mind that very little of what you see in my plugin tutorial is considered to be
‘pure C++’. T am largely an embedded C programmer and | prefer that over strict object
oriented C++. C will also run faster, and is what you get when you download the Mach3
SDK. No objects are used outside of the object model interfaces where it is really not
optional, | have seen COM / IDispatch programming done in pure C but it is really only
for masochists.

A good tutorial C++ site.

http://www.cplusplus.com/doc/tutorial/

Another good tutorial site with C language coverage and advanced topics.

http://www.cprogramming.com/tutorial.html

Very good tutorials on MFC in the context of Visual C++.

http://www.functionx.com/visualc/

Appendix D — Credits and Congratulations

The biggest credit goes to Art Fenerty, the tireless creator of Mach3. Without him an
entire industry would not exist. Brian Barker is doing an increasing amount of work with
Art. The creator of the first plugin abstraction and the basis for subsequent plugins is
John A. Prentice who we all owe much to. You all have my thanks and my admiration.

Appendix E — Contact Information

You may contact me at jemmyell@yahoo.com to inquire about Mach3 plugin
development.

| provide consulting and contract programming to the Mach3 community. | can provide
everything from pilot plugin projects to complete deliverables including documentation
and installers. Licensing modules that lock your plugin to an individual computer are
also available. Please contact me for details and a quote to jump start YOUR plugin
project.

In-house native Chinese Language (Mandarin) translation services are also available.

Copyright James W. Leonard — Leonard CNC Software

http://www.cplusplus.com/doc/tutorial/
http://www.cprogramming.com/tutorial.html
http://www.functionx.com/visualc/
mailto:jemmyell@yahoo.com

