

Using Modbus with Mach3
By

Peter Homann

Eventually a new user to Mach3 will hear the term “Modbus” being bandied

about. This article explains how it can be used with Mach3. But, before

diving in and showing how to use it in Mach3, a basic understanding of what

Modbus is, and how it works is required.

The Modbus Protocol
Modbus is arguably one of the most widely used communication interfaces

in industrial control applications. It was developed in the late seventies and
has stood the test of time. The nice thing about the Modbus standard is its

flexibility and the ease with which it can be implemented and used.

Its primary purpose of Modbus is to exchange data between slave devices

and a master. To put this into context, Mach3 is the Master, ModIO™s,

VFDs, and other devices are the slaves.

Modbus implements a number of protocols, namely, serial RTU/ASCII and

Modbus/TCP. The serial protocols may be transmitted over standard RS232

and/or RS485 interfaces. Modbus/TCP is transmitted over Ethernet.

Serial RTU is the most common protocol used with Mach3, although

Modbus/TCP is gaining popularity. Both Protocols may be used
simultaneously with Mach3. It should be noted that Serial/ASCII is not

implemented in Mach3.

Figure 1 below illustrates an Architecture Overview of a Mach3 Modbus

setup.

Figure 1 Architecture Overview

Query/Response Cycle

Modbus works on a query/response cycle. Only the master (Mach3) can

initiate communication. The slaves just respond to the masters queries. The

master transmits a query frame and one of the slaves (ModIO™) returns a

response frame back to the master. Each frame that the master sends out

contains the address of the slave that it wants the response from.

It is important to note that the query and response messages all have a

known starting and end point. This allows the receiver to know when a

message has been received, if it has been received in full and without error

and determine if the message is for them.

The Query / Response cycle is depicted in Figure 4 below.

Modbus Message Structure

Modbus messages are framed to allow the receiver to detect the start and
end of the message. Modbus RTU uses time gaps of silence to separate the

message frames. Each message must be preceded with a time gap

equivalent to 3.5 characters. When the receiver detects this gap after
receiving characters, it knows that a message has been received and can

process it.

The frame of a Modbus RTU message looks like this;

Architecture Overview

RS-232
Serial

RS485

Serial

Serial Modbus Slaves
ModIO(s), PLCs

Modbus Master
Mach3 Lan/Wan

TCP
Ethernet

TCP/IP Modbus Slaves
ModIP(s), PLCs

Field Description

Device address Address of the receiver

Function Code Code defining the message type

8-bit Data Bytes Block containing additional data

Checksum Checksum to validate message

Device Address - This identifies who the message is addressed to. Valid

addresses are 0-247 with address 0 being used as the broadcast address.

Broadcast messages are a special case, and are processed by all slaves with

no response message being returned. Addresses 1-247 are assigned to

individual slave devices. When a slave responds to a request it uses the
same address that was in the request. This allows the master to detect that

the slave has responded the request.

Function Code – The function code identifies the message type and the

action that is to be performed by the slave. The function codes implemented

by Mach3 are;

Code Data Type Description

01 Read Coils

02 Read Discrete Inputs

03 Read Holding Registers

04 Read Input Registers

15 Write multiple Coils

16 Write multiple Holding Registers

The register variables are 16 bit. Discretes and coils are single bit values.

Coils and holding registers may be read and/or written to. Discretes and

Input registers are read only.

8-bit data Bytes – This block contains any additional information in the

message. For the read commands, it contains the address and the number

of registers to read. For the write commands it contains the data to be

written, the number of registers to write the address that the data will be

written to.

Checksum – The checksum is a 16-bit CRC code that is used to validate the

message. The receiver uses this to ensure that the message is not

corrupted. If the message is deemed to be invalid, the receiver just ignores
it and does not respond with a reply.

Mach3 and Modbus a practical example

Figure 2 below depicts a simple example for using a ModIO™ via Modbus to

perform a number of simple Input/Output functions.

Three push buttons will be used to perform the Cycle Start, Feed-Hold and
Cycle Stop input functions. On the output side a three indicator light tower

will be used to show the mache/Mach3 status.

The ModIO™ is connected to the PC via the serial port connector. In this

example, Serial Port 1 is used.

Figure 2 Machine Light Tower Example

4

Machine Light Tower

ModIO
Serial Modbus Slave

24Vdc
Light Tower

Start

Feed-
hold

Stop

DIn0

Din2

Din1

GND

Vcom
(+24Vdc)

DOut2

DOut1

DOut0

Mach3 Modbus Configuration

In order to use Modbus in Mach3, a number of configurations need to be set

up. Mach has the ability to support Modbus RTU over a serial interface, a

TCP/IP Ethernet interface, or both.

Additionally, for Modbus over a serial line, Mach3 has two methods.

1. Legacy Modbus Interface

2. Plugin Supported Interface

The legacy interface was the initial Modbus interface initially targeting the

ModIO™ device. It is no longer the preferred interface, and will eventually

be removed from Mach3. As such, this article will focus on the Plugin

Supported Interface.

The first thing to do in getting Modbus to work is to enable it in the Ports

and Pins Configuration page. As can be seen in Figure 3 below, the

checkboxes for Modbus InputOutput Support and Modbus Plugin Supported

are both ticked. You may also notice that the TCP Modbus Support checkbox
is also ticked. You only need to tick this one if you are also going to use

Modbus devices that communicate over Ethernet.

You should now exit Mach3 and restart for this part of the configuration to
take effect.

Figure 3 Modbus Module Enable

Serial Modbus Configuration

For Mach3 to talk to the ModIO™ shown in Figure 2 above, the serial port

needs to be configured, as does the transfer of data (Modbus messages)

between Mach3 and the ModIO™.

The transfer of Modbus data is best thought of as shared memory between

the master and slave. Figure 4 below depicts the Modbus Query/Response

cycle that occurs between Mach3. Mach3 transfers output data to the

ModIO™, and reads back Input data from the ModIO™. These transfers are

done continuously at a rate set by the user, to a maximum of 40 times per

second.

The result is that Mach3 continuously gets a copy of the ModIO™’s inputs

(switches), and the ModIO™ gets a copy of the status outputs from Mach3

Figure 4 Query / Response Cycle

Device Address

Data Bytes
(Flexible)

Error Check

Device Address

Function Code

Data Bytes
(Flexible)

Error Check

Query

Response

Function Code

Master (Mach3)

Slaves (ModIO)

Modbus Cfg# Data

0

1

…

2

3

…

4

…

…

0

1

…

2

3

…

4

…

…

0

1

…

2

3

…

4

…

…

0

1

…

2

3

…

4

…

…

0

1

…

2

3

…

4

…

…

0

1

…

2

3

…

4

…

…

1150

1151

1152

1153

1154

1155

1156

1150

1151

1152

1153

1154

1155

1156

1150

1151

1152

1153

1154

1155

1156

Query / Response Cycle

Slave Register data

By continuously transferring the data between Mach3 and the ModIO™, any

spurious data errors will be corrected in the next transfer, and will be
transparent to the user.

Figure 5 Modbus Message Configuration

Figure 5 above shows the setup of the serial port and of the message

transfers. Along the top you can see that serial port 1 is being used, along

with the settings of 57600 baud, 8 data bits, 1 stop bit and no parity. Also

notice that a timeout of 100ms is configured. This means that if the

ModIO™ does not respond to the Modbus request within 100ms, Mach3 will

assume that it is not going to get a reply, and moves on to the next query.

There is also a checkbox to use RTS for transmit. When using a RS232 to

RS485 converter, it is necessary to tell the converter when Mach3 is

transmitting. This allows the converter to switch from receive to transmit (A

bit like pressing the talk button on a walkie-talkie).

One other very important checkbox is the one labelled “Modbus Run”. This
needs to be checked for Modbus to work.

Figure 5 above also shows the Message transfers that have been set up. We
will only be looking at the first two configuration entries namely, Cfg #0 and

Cfg #1. The other two entries are for a 2nd ModIO™ that we are not

concerned with.

The first configuration Cfg #0 is reading 8 holding registers from a ModIO™

with a Modbus sub-address of 3. The 8 registers in the ModIO™ start at

address 1150. Also they are being read every 50ms, a rate of 20 times per

second.

The 2nd configuration Cfg #1 is writing a single holding registers to the same

ModIO™ with a Modbus sub-address of 3. The register is written to address

1040. It also is being written every 50ms, a rate of 20 times per second.

To understand better the contents of the ModIO™ registers being

transferred, it is recommended that you read the user manual for the

ModIO™ as it gives a detailed description of each register.

In Brief, register 1040 of the ModIO™ uses the lower eight bits of the

register to represent the state of the 8 ModIO™ outputs. For each of these 8

bits, if it is set, then the corresponding output will turn on.

Also, register 1150, contains the status of the ModIO™’s 8 inputs. If the

input is active the corresponding bit in this register will be 1.

The end result of the above configuration is that there is now data being

continuously being transferred between Mach3 and the ModIO™. The status

of the 3 switches connected to the ModIO™ will now reside in the data

buffer for Cfg #0. Similarly, the contents of the data buffer for Cfg #1 will

now be written to the output resister in the ModIO™.

The next step is for Mach3 to process the switch data in the buffer for Cfg

#0, and to write the status to the buffer for Cfg #1 so that it can be

reflected by the indicators in the Light Tower. The processing of this data

performed via Mach3 Brains.

Mach3 Brains

The Mach3 brains are a graphical programming environment that allows the
user to create programs (Brains) so as to customise the functionality of

Mach3.

For our example we need to create a brain to perform the following

functionality.

1. When Mach3 is in RESET, flash the Red Indicator

2. When Mach3 is in FEEDHOLD, turn on the Yellow Indicator

3. When Waiting for a tool-change, flash the Yellow Indicator

4. When running G-code, or in FEEDHOLD, or waiting for a tool-change

turn on the Green Indicator

 The Brains environment consists of 3 modules;

• Brains Control Form
• Brains Editor

• Brains Real Time Viewer

A full description on the use of Brains in Mach3 could fill an article in its own

right. For more detailed description of Brains have a look at the video

tutorials on the Mach3 support sight at;

http://www.machsupport.com/videos.php

Also have a look through the relevant forum topics on the Mach3 support

forum at;

http://www.machsupport.com/forum/index.php

Brain Control Form

This Form provides the control to load the brains, turn them on and off and
to view them in the Brains Real Time Viewer

Figure 6 Brain Control Form

For out demonstration, you can see four brains, one for the switches, and

one each for the three light tower indicators. Breaking up your brain tasks

into a number of small brains is a good idea as is cuts down the complexity

when working in the Brains editor.

Brain Editor

The editor is where you can create and edit your Brains. Depicted below in

Figure 7 is the switches brain. It is a very simple brain. On the left hand
side are the inputs, followed by any processing done to the inputs with the

result being set into the output on the right hand side.

Figure 7 Switches Brain

In the brain above if we look at the third line, the input box “MOD: 1-D2-

P:0” specifies;

• MOD: The input is a Modbus input

• 1 The 1st register in the Modbus buffer

• D2 Data bit 2 is being used (Red Switch is connect to this input)

• P:0 Cfg #0 data buffer is being used.

The processing or function box which is next shows that the input is just

passed through without modification. The output Box shows that the output

item being written to is the Mach3 Stop File button.

The other two lines in this brain work in a similar way and the result of all of

this;

• When the Green switch is pressed Cycle Start is activated

• When the Blue switch is pressed Feed Hold is activated
• When the Red switch is pressed Stop is activated

A more complex brain is depicted below in Figure 8. This is for the yellow

indicator that is used to indicate when a tool-change is occurring and when

feed hold is activated.

Figure 8 Tower Yellow Indicator

Looking at the inputs we can note the following;

• Partial Line Hold is used to determine when the G-Code is waiting

due to Feed Hold being active

• ToolChange Wait is used to indicate that the tool change is waiting
for the user to press Cycle Start again

• MOD:6-D3-P:0 This Modbus input from the ModIO™ is used to

generate a flashing signal from the indicator. The register identified by

the 6 is a continuously incrementing counter generated by the

ModIO™. Data bit 3 of this register is toggling at a rate of about 2 per

second, so we can used this as a flashing indicator.

The processing is a bit more complex that the previous brain. The flashing

indicator from the ModIO™ and the Tool change wait signal are ANDed

together with the result that we now have a Tool change Wait signal that

now is flashing.

The next function to the right takes the flashing tool change Wait signal and
ORs it with the Partial Line Hold signal.

The output of this block is then set to Bit 1 of the first register in the buffer

for Cfg#1 for the Modbus Serial Plugin module. This then gets sent to the
ModIO™ and since the yellow indicator is connected to output D1, it will be

controlled by this brain

So now the Yellow indicator will turn on if the Feedhold is active. Or, if

Mach3 is waiting for a Tool change, the indicator will flash, otherwise it will

be off.

 Similarly, the Green indicator Brain as been written so that the indicator

will turn on when G-code is running or when waiting for a tool change or

feed hold is active. In other words the green indicator will be on whenever

Mach3 is not in Reset or Stopped.

Figure 9 Green Indicator Brain

The Red indicator is used to indicate that RESET is active and will flash the

Red indicator when active.

Figure 10 Red Indicator Brain

Brain Real Time Viewer

The Viewer is accessed from the Brains Control Form and can be used to

debug a brain as it shows the state of the inputs, outputs and processing

blocks

Figure 11 Brains Real-time Viewer

The Viewer depicted above in Figure 11shows the state of each of the blocks

with the brain. As can been seen, one of the inputs is active and is shown is
Green. The corresponding functions block that are also active are shown in

green as well. Outputs are coloured green or red depending whether they as

active or not.

The status is shown in real time so if a switch is pressed, that input will

change to green to indicate this. The viewer is able to help with the

debugging of brains when the system doesn’t appear to behave as expected

Conclusion

Mach3’s integration of Modbus provides a very powerful, industrial strength
interface, which will allow you to control many off the shelf I/O devices such

as Programmable Logic Controllers (PLCs) and Variable Frequency Drives

(VFDs). You can use it with devices such as the ModIO™ to create complex

custom I/O devices such as Automatic Tool changers and remote Pendants.

For further information and resources on Modbus, applications and hardware

a number of resources are listed below.

Modbus Specification

http://www.modbus.org/specs.php

ModIO™ Manual

http://homanndesigns.com/store/index.php?main_page=product_info&products_id=4&zeni

d=fbbc5a68049baf9e2a51ee4192ca79c0

Modbus Customisation examples

http://www.machsupport.com/MachCustomizeWiki/index.php?title=Customization_case_st

udies

Mach3 Modbus and Brain Tutorial Videos

http://www.machsupport.com/videos.php

Mach3 Support Forum

http://www.machsupport.com/forum/index.php

