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1 Introduction 
The purpose of this manual is to teach the basics of scripting in Mach4 using the Lua interface.  Scripts 

add functionality to Mach4 by providing the user with an interface to create custom M codes, macros to 

control tool changers and other custom accessories, create programming wizards, custom button 

functions, and much more.  This manual will provide some basic programming knowledge as it pertains 

to creating scripts for Mach4.  For more advanced Lua programming there are a variety of resources 

available online and in print. 

 

 

1.1 Before You Begin 
Any machine tool is potentially dangerous. Computer controlled machines are 
potentially more dangerous than manual ones because, for example, a computer is 
quite prepared to rotate an 8" unbalanced cast iron four-jaw chuck at 3000 rpm, to 
plunge a panel-fielding router cutter deep into a piece of oak, or to mill away the 
clamps holding your work to the table. Because we do not know the details of your 
machine or local conditions we can accept no responsibility for the performance of 

any machine or any damage or injury caused by its use. It is your responsibility to ensure that you 
understand the implications of what you design and build and to comply with any legislation and codes 
of practice applicable to your country or state. If you are in any doubt, be sure to seek guidance from a 
professionally qualified expert rather than risk injury to yourself or to others. 

1.2 What is Mach4? 

Note: Operators should be familiar with general CNC and machining practices before 

operating any CNC machine.  Some great resources for additional learning at the 

machsupport.com forums, other user groups/forums, and books such as CNC 

Programming Handbook and CNC Control Setup for Milling and Turning, both by Peter 

Smid and Programming of CNC Machines by Ken Evans 
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Mach4 is software that operates on a personal computer to create a powerful and cost efficient CNC 

controller.  It makes up one small piece of a computer numerical control (CNC) machine.  Machines can 

range from basic mills and lathes to wood routers, plasma cutters, multi axis machining centers, quilting 

machines, anything requiring motion control.  The system is capable of interpreting multiple 

programming languages, the default and most common being G code, to provide instructions for 

machine movement and other functions.  These instructions are passed to an external motion device 

which in turn controls all the inputs and output signals and motion. 

Mach4 is designed to be flexible and adaptable to a wide variety of machines.  Part of this flexibility is 

the ability for hardware and software developers to create addons or plugins for Mach4 to expand its 

capabilities.  Addons are small programs installed into the Mach4 directory that give Mach the ability to 

talk to hardware devices such as motion controllers and pendants, communicate with other software, 

add additional wizards or conversational machining functions, or anything a developer can dream up.  

Addons to Mach4 are so diverse it would be impossible to cover them in this manual.  The developer 

should provide detailed information on the installation, configuration and use of their addon or plugin. 

1.3 What is a Mach4 Script? 
Scripts in Mach4 are written in the Lua programming language.  Users and OEMs can create scripts to 

accomplish any number of tasks, limited only by the programmer’s imagination.  There are four types of 

scripts in Mach4: M codes, modules, screen, and panels.  M codes, screen scripts and panel scripts are 

each separate containers for code.  They cannot interact with each other directly.  For example, a 

variable or function defined in an M code cannot be used in a script on the screen.  However, modules 

provide a place to put code that can be accessed by the others.  An M code or screen script can call and 

use functions and variables from a loaded module.  Registers are a powerful way to pass data between 

different processes in Mach4 and can be used as a bridge between script types. 

What is an external motion device?  Originally, Mach-series software only worked with 

the parallel port (via the parallel port driver), which was a standard port on every PC.  

Technologies have advanced over time, and not only is the parallel port becoming 

obsolete, but the Windows codebase has changed to the point where it is technical 

impossible for the parallel port driver to work.  An external motion device is a piece of 

hardware that is an improvement over the parallel port.  It enables a PC running 

Mach3/Mach4 to control outputs and read inputs.  They typically communicate with the PC 

via an Ethernet or USB connection (but are not limited to those two means of 

communication).  In order to control a machine using an external motion device, the 

developer of the hardware must write a plugin (driver) for that specific device, so no 

standard USB-to-parallel port adapters will work.  There are many devices listed on our 

Plugins page in the software and download section of our website 

(www.machsupport.com). 
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2 Script Editor 
Mach4 includes a built in script editor.  The editor can be found in the ‘Operator’ menu as ‘Edit/Debug 

Scripts’ (see Figure 2-1).  Selecting ‘Edit/Debut Scripts’ will open a window to select the script to be 

edited.  By default the ‘Macros’ folder for the current profile will be shown.  Select and open a file and it 

will be opened in the editor. 

 

Figure 2-1: Operator Menu 

The script editor is essentially a fancy text editor, with some features specific to programming scripts 

and macros for Mach4. 

 

Figure 2-2: Script Editor 
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2.1 File Menu 

 

Figure 2-3: Script editor file menu. 

The file menu contains the controls “New”, “Open”, “Close”, “Save” and “Exit”.  Selecting new will open 

a blank file for creating a new script.  Open will open a window to allow the user to find and select an 

existing script to edit.  The close option will close the currently active file.  Save allows the user to save 

the script, there is also a “Save As” option that will can save the document as a new name or in a new 

location.  Exit simply closes the editor and any open files. 

2.2 Edit Menu 

 

Figure 2-4: script editor edit menu. 

The edit menu contains the typical Cut, Copy, Paste, Select All, Undo/Redo controls as well as a couple 

specific to the script editor.  When Auto Complete Identifiers is checked the auto complete window will 

display when typing text in the editor.  If the text being typed partially matches known commands then 

the window will display the possible options.  When Auto Complete Identifiers is not checked the auto 

complete window will not be displayed automatically, but it can be manually shown with the Complete 

Identifier (Ctrl+K) command.  Comment/Uncomment will either add the “- -“ characters to selected text 

to change it to a comment, or remove the “- -“. 
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Settings displays window that allows the operator to change the color and style of different types of text 

in the program. 

 

Figure 2-5: Script editor settings. 

2.3 Search Menu 

 

Figure 2-6: Script editor search menu 

In the search menu the user can find commands to search for and replace text, jump to specific line 

numbers and sort lines in alphanumerical order.  Numbers first, 0 to 9, then letters, A to Z.   
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2.4 Debug Menu 

 

Figure 2-7: Script editor debug menu. 

The debug menu contains the controls for running and debugging programs.  Compile compiles the 

current program into a .mcc file.  Run will execute the script. 

Start Debugging will start the debugger.  Debugging helps in diagnosing errors in the program.  There are 

a couple ways to run through the program in the debugging mode.  The Start Debugging command will 

change to Continue when in the debugging mode.  When the debugger starts the program will pause at 

the beginning and wait for input from the user.  Continue will run through the complete program.  The 

other controls, Step Into, Step Over, and Step Out allow the user to step through the script line by line.  

Step Into and Step Over differ in the way functions are executed.  Step Into will make a single step into 

the function.  Step Over will execute the entire function and pause at the end.  If a function is stepped 

into, the Step Out command will execute the remaining portion of the function and pause at the end. 

The Console shows error messages and debugging data while running programs. 

2.5 Help Menu 
The Help Menu displays the About information. 
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2.6 Toolbar 

 

Figure 2-8: Script editor toolbar 

The toolbar in the script editor contains some of the most common controls.  From left to right: 

 Create new document 

 Open existing document 

 Save current document 

 Save all open documents 

 Cut 

 Copy 

 Paste 

 Undo 

 Redo 

 Search for text 

 Find and replace text 

 

3 Types of Scripts 
Scripts are divided into 4 types: M codes, screen, panel and modules.  This chapter will discuss the 

differences in and interactions between these types. 

3.1 M codes 
M codes, or miscellaneous functions, are used to create additional functionality in a machine.  They are 

specified in a G code program or in the MDI mode.  The functions can range from turning on and off 

coolant to changing tools, to custom code to engrave a serial number.  With the ability to script custom 

macro M codes the possible functions are as diverse and varied as the machines and operators running 

them.  M code scripts use a .mcs file extension. 

Scripts cannot be written for all M codes, some have functions that are defined in Mach4 and will only 

perform that function.  Below is a list of the M codes and how they interact with user scripts and 

internal functions. 

3.1.1 Scriptable M codes 
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User Scriptable/No Internal 

Function 

User Scriptable And Internal 

Function 
Internal Function Only 

M6 M3 to M5 M00 to M02 

M10 to M45 M7-M9 M46 to M48 

M50 to M61 M30 M62 to M65 

M66 to M95 M47 M96 to M99 

M100 and up   

 

M codes in the column “User Scriptable/No Internal Function” are completely open to user scripts.  

There is not function associated to them in Mach4. 

M codes in the column “User Scriptable And Internal Function” have internal functions in Mach4, but 

also allow user scripts.  These codes are further divided into those that call the function internal to 

Mach4 OR a user script and those that run both.  M3 to M5 and M7 to M9 are codes that control the 

spindle and coolant functions.  If there is no user script for these codes they turn on/off their respective 

signals as defined inside Mach4.  However, if a user script is present, the script will be run instead.  This 

gives the user the power to create custom codes for custom spindle and coolant applications, but if the 

machine simply needs to turn on/off an output, no programming is required. 

M30 and M47 are both codes that show up at the end of a program.  As they are required to end and/or 

rewind the G code execution their internal functions cannot be ignored.  However, it is useful to have a 

script execute at the end of a program, a parts counter for instance.  For this reason both codes will 

execute a user script if it is present.  After executing the script the M30 and M47 will execute the 

internal function of ending/rewinding the program. 

The last column is “Internal Function Only.”  M codes found in this column will only execute their 

internal functions and will NOT execute a user script, even if one is present. 

Using custom M codes requires the scripts to be located in the ‘Macros’ folder located in the folder for 

the desired profile.  Navigate to the Mach4 root directory, usually located on the C drive, open the 

‘Profiles’ folder, then open the folder of the desired profile.  The name of the folder will be the name of 

the profile, ‘Mach4Mill’ for example.  The ‘Macros’ folder will be located in this profile folder. 

Every script file in this folder will be compiled into one file.  If a custom M code is desired it must have 

an associated file in this folder named in the format M3.mcs, replace the 3 with whatever M code is 

desired.  The format of the script is important as well.  Because all the files get compiled into one, each 

M code must be its own function. 

function m3() 

    inst=mc.mcGetInstance() 

    mc.mcCntlSetLastError(inst, 'Spindle Clockwise') 

    mc.mcSpindleSetDirection(inst, 1) 

end 

 

if (mc.mcInEditor() == 1) then 

    m3() 

end 
 

3.1.2 M Code Macro Folder 
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Above is an example of a custom script for the M code M3.  The name of this file is m3.mcs (Note the 

lower case file name).  Reading through the script the main chunk is the function m3() (Note the lower 

case function name).  This is the function that will be called when an M3 is commanded in a G code file 

or MDI.  The second part of this script is for debugging purposes.  When the script is open in the editor 

nothing would happen when it was run unless there was some code to call the m3() function.  However, 

if there was simply and m3() line to call it, the M code would be executed as soon as Mach4 loads.  The if 

statement checks to see if the script is open in the editor, if it is, then the m3() will be executed.  

Otherwise the function will need to be called from a G code program or MDI command. 

 

Again, it is important to note that the M code script file names needs to be lower case as well as the 

functions names inside the modules.  Mixing in upper case letters will not work. 

3.2 Screen Scripts 
The screen contains scripts than run on load and unload and a plc script.  Certain screen elements (such 

as buttons, panels, DROs, and tabs) can also execute user defined scripts.  These scripts call all be set in 

the screen editor (see the Mach4 customization manual for more information of customizing the 

screen). 

The screen load script runs when the screen is loaded.  This is a useful tool for loading saved settings or 

data, setting a start-up state, initializing controls, etc. 

Global functions that will be used in other scripts on the screen can also be run in the screen load script.  

All scripts in the screen (with the exception of panels) will have access to global functions and variables 

that are defined in the screen load script.  This can reduce the amount of programming for the user. 

A word of caution: The screen load script runs while the screen is being loaded.  When trying to set the 

state of screen elements use care, sometimes the target element has not been loaded when the screen 

load script runs.  If data it to be set on the screen, it is usually best to do that in the first run of the PLC 

script. 

The screen unload script runs when the screen is unloaded.  This can be a useful tool for saving settings 

or data.  Registers are a perfect example as their values are not saved by Mach4 on exit.  The best place 

to store data with a profile is in the .ini file.  Mach4 provides an easy way to do this from a script with 

the mc.mcProfileWriteString(inst, section, key, value) command.  With this command it is possible to 

write any data to the .ini file to be saved and reloaded later.  The register’s section shows specific 

examples for saving and loading registers from the .ini file. 

The PLC script continuously runs at an interval set in the screen.  By default the PLC scripts run on a 50 

millisecond interval.  Although this is a script and not a ladder type program, it does provide a similar 

functionality to a PLC, hence the name.  This script can monitor the state of signals and inputs and 

3.2.1 Screen Load Script 

3.2.2 Screen Unload Script 

3.2.3 PLC Script 
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outputs and react very quickly.  A common use for the PLC script is showing errors or faults from 

external devices such as servo drives and VFDs. 

The first run of the PLC script is also the best place to set data on the screen for the first time.  This 

ensures that the target element on the screen exists before data is being set.  Running a section of the 

code on the first run is easy to accomplish with a simple counter in the PLC script. 

count = count + 1 
 

With this count variable at the top of the PLC program it will count up by one every time the PLC script 

runs.  So, on the first run count will equal 1.  So an if statement can run certain code only on the first 

run. 

The signal script is an all new concept in Mach4.  This script is an event handler that can be used to 

perform actions in response to state changes of signals in the signal library.  Signals are internal triggers 

for events in Mach4 and are not to be confused with external inputs and outputs.  Some signals are 

completely internal and some are used to connect to external inputs and outputs.  The signal script can 

connect all signals to an action. 

How does it work?  A change in state of a signal is considered an event, on every event the signal script 

runs.  In the signal script two variables are used to determine which signal triggered the event and what 

its new state is.  The variable “sig” is the internal ID number of the signal, and the variable “state” is the 

state of the signal after the event. 

Now we know which signal triggered the event and what its state is, but we don’t know if it is the signal 

we want.  To do this we need a way of comparing the ID numbers of the signal we want to perform an 

action and the signal that triggered the event.  This means knowing the ID number of the signal we 

want.  Mach4 makes this easy on us by providing a complete set of signal definitions.  They are all in the 

format: mc.OSIG_MACHINE_ENABLED, mc.ISIG_INPUT0, etc. 

One application of this is to connect physical buttons on a control panel to actions in Mach4.  Let’s make 

a simple cycle start button that is setup on input 1.  Since we will be using input 1, the ID number we’ll 

be looking for is mc.ISIG_INPUT1.  In the signal script we could have this code: 

if (sig == mc.ISIG_INPUT1) then 

    local inst = mc.mcGetInstance() 

    mc.mcCntlCycleStart(inst) 

end 
 

Now, this would work, however remember that the signal script runs for every event.  The events are 

when the signal changes state.  So this code would command the cycle start when the button is pressed, 

and again when it is released.  To avoid this we can look for the state to be what we want as well.  That 

would lead us to: 

if (sig == mc.ISIG_INPUT1) and (state == 1) then 

    local inst = mc.mcGetInstance() 

    mc.mcCntlCycleStart(inst) 

end 
 

3.2.4 Signal Script 



13 
 

SignalTable = { 

    [mc.ISIG_INPUT1] = function (on_off) 

        if (on_off == 1) then 

            mc.mcCntlCycleStart(inst) 

        end 

    end 

} 
 

This code would look for the input 1 signal to change to an active state.  When the signal changes to the 

off state the cycle start will not run.  This is relatively simple, but if when connecting a lot of signals the 

script can get very complex, and checking many if statements can bog things down, slowing the reaction 

to state changes.  To make things run more efficiently we can use a table for all the signals we want to 

use, and index that table from the signal script.  The best place to create the table is in the screen load 

script, where it will be loaded when Mach4 is started and can then be accessed by the signal script, or 

any other script in the screen.  The table in the screen load script could look something like this: 

This table contains a function with a name matching the ID number of signal connected to input 1.  That 

function will command a cycle start when the state of the signal is equal to 1, or the signal is active.  

Now that we have a table we need some code to index it in the signal script. 

This code, which lives in the signal script, will look into the table, SignalTable, for an entry matching the 

signal ID number that is stored in the variable sig.  If there is no entry nothing is done.  If there is, then 

the state is passed into the function and the desired action is performed. 

This seems more complex than the if statements at first glance, but it really isn’t.  The only code that will 

be in the signal script is that shown above.  The signal table will grow as functions are added in, but it is 

no more difficult or complex than the many if statements that would be required.  And, as said before, 

the table is much faster to index and thus far more efficient and reactive to events. 

if (SignalTable[sig] ~= nil) then 

    SignalTable[sig](state) 

end 
 

3.3 Panels 
Although panels are located on the screen, they deserve their own section as they are a separate entity.  

Unlike all the other screen elements they do not share the same global space, and thus cannot access 

functions or variables in the screen load script like buttons and other controls can.  However, they can 

load and utilize modules just as any other script in Mach4 can. 

Panels are simply and environment to run a self-contained Lua program.  Elements of a panel are not 

defined in the screen designer, they are defined in the code contained in the panel.  The easiest way to 

create an interface in a panel is to use a form designer capable of outputting Lua code, wxFormBuilder 

for example. 

The mouse wheel as MPG code is a great example of how panels can be used.  A video tutorial about 

this code can be found here: https://www.youtube.com/watch?v=MRyaRQwhYWk.  A link to the code is 

in the description. 

Wizards are another example of what can be shown in a panel.  Mach4 comes with an example bolt hole 

circle wizard that can be displayed in its own dedicated frame or in a panel on the Mach4 screen.  The 

https://www.youtube.com/watch?v=MRyaRQwhYWk
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code for this wizard can be found in the “Wizards” folder in the Mach4 directory on your computer, the 

file name is “BoltHoleCircle.mcs”. 

4 Registers 
Registers are a very powerful tool in Mach4.  They are completely user definable and can be accessed 

from anywhere in Mach4.  Scripts can use them to record and save data or to transfer data to another 

script or communicate with a plugin.  Registers can contain numbers or strings. 

4.1 Creating Registers 
Registers are created in the Regfile plugin.  Select “Plugins…” from the “Configure” menu to display the 

plugin configuration window, figure 4-1. 

 

Figure 4-1: Configure plugins window. 

In the configure plugins window find the Regfile plugin, row 6 in this case, and click on the “Configure…” 

button.  This will open the register configuration window, figure 4-2. 

 

Figure 4-2: Register file configuration window. 
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In this window new registers can be created as well as assigned initial, or default, values.  To add a 

register click on the icon with the green plus sign (top left corner of the tab).  A new row will be added, 

simply give it a name, an initial value, and a description.  The name will be used to look up the register, 

so use something simple.  The description is optional but accurate descriptions are certainly beneficial in 

the long run. 

The initial value is the value that will be assigned to the register when Mach4 loads.  The registers are 

not saved by default when Mach4 is closed.  If a register, or many, needs to be saved on exit the Screen 

Unload script is a great place to do this.  Also, to load the saved value use the Screen Load script.  Saving 

registers to and loading them from the Machine.ini file will be covered in the next sections. 

4.2 Viewing Registers 
The Regfile configuration window shows the registers and their default values.  A diagnostics window is 

provided to show the registers and their values in real time.  The diagnostics window can be found by 

selecting “Regfile” from the “Diagnostic” menu in Mach4. 

 

Figure 4-3: Register diagnostics window. 

The diagnostics window displays all the registers in Mach4 and also provides a display for the pound 

variables.  If the “iRegs0” category is expanded we will see the registers and associated values from the 

previous section. 

The register diagnostics window is not limited to only viewing register values, they can be changed as 

well.  Double click on any value and an input window will pop up to allow the user to change the value. 

4.3 Using Registers in Scripts 
There are several commands available for working with registers, for clarity and simplicity we will be 

using only the necessary few here: 

 hreg = mc.mcRegGetHandle(inst, path) 

 val = mc.mcRegGetValue(hreg) 

 string = mc.mcRegGetValueString(hreg) 

 mc.mcRegSetValue(hreg) 
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 mc.mcRegSetValueString(hreg) 

The first step in using registers in scripts is to get the handle.  The handle is basically an ID number 

assigned to the register internally in Mach.  There is now what to know this except to ask Mach for it.  

The mcRegGetHandle function returns the ID or handle.  There are two arguments required for this 

function, the current instance number of Mach we are working in and the path of the register.  The 

instance can be found using the mc.GetInstance function in the format: 

inst = mc.mcGetInstance() 
 

The path is the register type followed by the register name.  For example, the path for the first register 

in figure 4-2 is “iRegs0/Test1.”  So to get the handle of the Test1 register the code would look like: 

inst = mc.mcGetInstance() 

hreg = mc.mcRegGetHandle(inst, "iRegs0/Test1") 
 

Now to get the value.  Here we are discussing two ways to retrieve the value, as a number or as a string.  

If the register’s value is an unknown type then use mcRegGetValueString.  Using mcRegGetValue will 

result in an error if the register contains a string, but mcRegGetValueString can read a number or a 

string as a string.  The only catch there is that math cannot be performed on a string, even if it is a sting 

of only numbers.  Strings containing only numbers can be converted to a number format by using the 

tonumber(“string”) command.  Let’s use mcRegGetValueString to retrieve the value of Test1 and then 

convert it to a number for computation later.  Ofcourse this only works for values that are numbers, the 

tonumber(“string”) function will create an error if the string contains more than just numbers. 

inst = mc.mcGetInstance() 

hreg = mc.mcRegGetHandle(inst, "iRegs0/Test1") 

val = mc.mcRegGetValueString(hreg) 

val = tonumber(val) 
 

It would save a line of code to use the mcRegGetValue(hreg) function, but there is a reason for using the 

string method shown above.  Every time a register is called it requires two lines of code, as well as the 

current instance.  There is an easier way, create our own function.  Remember that all the contents of 

the macros folder are rolled into one large file, and the screen has access to all the elements of the 

screen, and the modules can be loaded and used everywhere.  With the standard method shown above 

this code would have to be used every time register information was needed, in every M code, every 

button, every script in Mach4.  Making a function to call the register is much easier and can make the 

code a lot cleaner.  Let’s use a button on the screen as an example.  We would like a button to get the 

value of a register and display it in a message box to the user.  Or first step will to be to create a function 

in the screen load script to get and return the value of the register.  This function can be used by our 

new button and any other button we decide to add to the screen.  In the screen load script we will make 

a function as shown below. 

function GetRegister(regname) 

    local inst = mc.mcGetInstance() 

    local hreg = mc.mcRegGetHandle(inst, string.format("iRegs0/%s", regname)) 

    return mc.mcRegGetValueString(hreg) 

end 
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With this function in the screen load script, our button can call it.  To get the value of the “Test1” 

register and display it in a message box the button script will be: 

regval = GetRegister("Test1") 

wx.wxMessageBox(regval) 
 

Now with that function created, any time we want to retrieve the value of a register we simple call the 

GetRegister(regname) function with the name of the register to get.  In the screen of course.  Try adding 

this function to the screen load script then create a button on the screen to use the GetRegister 

function. 

A similar process can be used in the macros.  For example a file can be created named “macrofunctions” 

that contains the GetRegister function and any others that will be frequently used.  The functions in this 

file can be accessed by any of the other macros. 

Another approach is to use a module.  The module can contain these functions then be loaded by the 

screen load script or in a macro.  The functions contained in the module can be used anywhere it is 

loaded. 

A function for writing to registers is also useful, and if very similar to the GetRegister function above. 

function WriteRegister(regname, regvalue) 

    local inst = mc.mcGetInstance() 

    local hreg = mc.mcRegGetHandle(inst, string.format("iRegs0/%s", regname)) 

    mc.mcRegSetValueString(hreg, tostring(regvalue)) 

end 

 

Using WriteRegister is also very simple. 

WriteRegister("Test1", 12) 

 

The example will write a value of 12 to the instance register “Test1”.  Again, this function does 

everything as a string, this way strings or numbers can be sent and set to the registers.  If a number is 

passed into the function it will be converted to a string with the tostring function. 

4.4 Saving Registers to Machine.ini 
Since register values are not saved when Mach is closed it is necessary to create code to save any 

desired registers.  The easiest and most convenient place is in the Machine.ini file.  One place for a 

register save script is in the screen unload script.  This script runs when the screen is unloaded/Mach4 is 

closed.  Another place to save registers is in the code immediately following when they are set.  The best 

time and place to save registers to the .ini file will vary depending on the application. 

To save a register to the .ini file use mc.mcProfileWriteString().  To use this we need to define a section 

in the .ini file to place the data, specify a name for the data and then the value.  For this example let’s 

assume the register ‘Test1’ equals 6. 

local inst = mc.mcGetInstance() 

 

local hreg = mc.mcRegGetHandle(inst, "iRegs0/Test1")  

local val = mc.mcRegGetValue(hreg) 

val = tostring(val) 
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mc.mcProfileWriteString(inst, "Registers", "Test1", val) 
 

This little bit of code gets the value of register ‘Test1’ and then writes it to the Machine.ini file in a 

section labeled as “Registers” with a name “Test1”.  The Machine.ini file will contain a section like this: 

[Registers] 

Test1 = 6 

If the section “Registers” does not exist it will be created, if it does the key “Test1” will be added to it.  

Writing data to the Machine.ini file is very useful for saving registers, but that is not the only application 

for it.  Any data can be saved for use later, custom screens may have configuration data that needs to be 

stored, wizards may have information to store for next time, etc. 

4.5 Loading Registers From Machine.ini 
After data is saved to the Machine.ini file it is very useful to retrieve it.  For registers, this means that 

they can be initialized with saved values when Mach4 starts. 

Like with saving to the Machine.ini file there is a function for loading from it, mc.mcProfileGetString().  

For example, to get the previously saved value for “Test1” and set it to the register of the same name 

the code could be: 

local inst = mc.mcGetInstance() 

 

local val = mc.mcProfileGetString(inst, "Registers", "Test1", "nf") 

 

local hreg = mc.mcRegGetHandle(inst, "iRegs0/Test1") 

mc.mcRegSetValueString(hreg, val) 
 

In this code the variable ‘val’ is set to the value found in the Machine.ini file under the section 

“Registers” and key “Test1”.  If there is no value found, ‘val’ will be set to “nf”, the default value we 

defined in the mc.mcProfileGetString() function.  This default value can be defined as anything, it will 

only be used if there is no value found in the Machine.ini file.  A unique value here can be useful to 

perform a specific action if the key does not exist in the .ini file or if a simple default value is desired. 

5 Examples 
The following examples are to provide some guidance on the creation of scripts.  They are not specific to 

any one machine and are not guaranteed to work on any machine. 

5.1 Using Signals 
Signals are internal triggers for events in Mach4.  They can be tied to external I/O, or internal events 

such as running a Gcode file, jogging, feed hold, soft limit state, enabled state, etc.  A common use for 

signals in scripts will be to read the state of inputs, and set outputs active or inactive.  Turning on/off 

coolant, clamping fixtures, and special spindle functions, are all examples of when signals might be used 

in a script.  Here is a quick script for turning the spindle on, in the forward direction, Mach signal 

OSIG_SPINDLEFWD. 

local inst = mc.mcGetInstance() 
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local hsig = mc.mcSignalGetHandle(inst, mc.OSIG_SPINDLEFWD) 

local spinstate = mc.mcSignalGetState(hsig) 

if (spindstate == 0) then 

    mc.mcSignalSetState(hsig, 1) 

else 

    mc.mcSignalSetState(hsig, 0) 

end 

 

To use a signal we first need to know the handle, or Mach’s internal reference ID for the signal.  Once we 

know the handle, the state can be read and/or written to.  By reading the state of OSIG_SPINDLEFWD 

we know if the spindle is on in the forward direction or not.  We can then decide what to do based on 

that information.  This script will turn the spindle on in the forward direction if it is currently not running 

in forward, and will stop it if it is running in forward.  This is a very simple example, but it shows the 

basics of how to use signals. 

5.2 Reading Data from an External File 
Lua scripts are also capable of reading data from an external file, a .csv for example.  This can be 

extremely useful for providing a table of shapes for a wizard, or materials, positions for a tool changer, 

etc.  Having data in an external file can make it easier to edit by providing a formatted Excel spreadsheet 

for example, or make it more difficult by making the file read only. 

For an example let’s make a .csv file that contains X, Y and Z positions of tools in a rack style tool 

changer, we’ll call it “ToolChangePositions.csv”.  This is what it will look like: 

Looking at this table we can see that tool number 1 is at the position X3.5, Y2, Z-10.  If we can read this 

data into a table in a script it can be used to find the tool position in a tool change routine.  Below is 

what that script could look like. 

For this a table makes the most sense for storing the tool position data.  We can start by defining the 

table TC_Positions. 

Then we can find the .csv file and store the path to a variable, in this case CSVPath. 

Next we open the file to read the data.  Because we are going to have multiple pieces of data, tool 

number and three positions, for each entry we will create a table for each entry within the TCPositions 

table.  The variable ToolNum sets the ID of each entry, or line in the .csv.  So we start with ToolNum = 0, 

the header information will land here.  Then we increment ToolNum by 1 and run it again, so all the data 

from the tool number 1 line in the .csv will be in the table TCPositions[1] table and so on.  This loop will 

run until there is no more data in the .csv. 

Tool_Number,X_Position,Y_Position,Z_Position 

1,3.5,2,-10 

2,5,2,-10 

3,6.5,2,-10 

4,8,2,-10 

5,9.5,2,-10 

6,11,2,-10 
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Just before incrementing ToolNum, we can set a max tool number in TCPositions so we know how many 

tools have been defined.  We will call this TCPositions[“Max”].  The value of this will be equal to the last 

tool number entered.  So in this example TCPositions[“Max”] = 6. 

Now the position data can be used in a tool change script.  The following lines show how to read and use 

the data.  This example script checks to make sure the selected tool number is greater than 0 but less 

than or equal to the maximum.  So if a user tried to select tool number 10 they would get the “ERROR: 

Tool number out of range!” message.  If the selected tool number is within the valid range then the tool 

position data will be displayed in the message bar on the Mach4 screen. 

local TC_Positions = {} 

local inst = mc.mcGetInstance() 

 

local CSVPath = wx.wxGetCwd() .. "\\Profiles\\YourProfile\\Modules\\ToolChangePositions.csv" 

 

ToolNum = 0; 

--[[ 

Open the file and read out the data 

--]] 

 io.input(io.open(CSVPath,"r")) 

local line; 

for line in io.lines(CSVPath) do  

    tkz = wx.wxStringTokenizer(line, ","); 

    TC_Positions[ToolNum] = {}-- make a blank table in the positions table to hold the tool data  

    local token = tkz:GetNextToken(); 

 

    TC_Positions[ToolNum] ["Tool_Number"] = token; 

    TC_Positions[ToolNum] ["X_Position"] = tkz:GetNextToken(); 

    TC_Positions[ToolNum] ["Y_Position"] = tkz:GetNextToken(); 

    TC_Positions[ToolNum] ["Z_Position"] = tkz:GetNextToken(); 

        TC_Positions["Max"] = ToolNum --Set the max tool number 

    ToolNum = ToolNum + 1 --Increment the tool number 

end 

    io.close() 

 

--Read tool data 

local SelectedToolNum = 1 

local MaxToolNum = TC_Positions["Max"] 

 

if (SelectedToolNum <= MaxToolNum) and (SelectedToolNum > 0) then    

    local Num = TC_Positions[SelectedToolNum].Tool_Number 

    local XPos = TC_Positions[SelectedToolNum].X_Position 

    local YPos = TC_Positions[SelectedToolNum].Y_Position 

    local ZPos = TC_Positions[SelectedToolNum].Z_Position 

 

    mc.mcCntlSetLastError(inst, string.format("Tool: %.0f | X: %.3f | Y: %.3f | Z: %.3f", Num, 

XPos, YPos, ZPos)) 

else 

    mc.mcCntlSetLastError(inst, "ERROR: Tool number out of range!") 

end 

 

5.3 Modules 
Modules are scripts that can be accessed from any other script in Mach4.  This is useful if you have 

functions or data that could be used in multiple types of scripts all throughout your Mach interface.  This 

could be reading and storing data for wizards, commonly used functions, or all of the special scripts and 

functions used in the screen.  For developers putting special or custom scripts in a module has the 

benefit of being able to compile it so pieces of the code cannot be copied and reused somewhere.  

Screen buttons that require lengthy scripts can be simple function calls to code in a compiled module. 
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For an example, the tool change position script from the previous section could be converted into a 

module to be used by the tool change routine.   This will simplify the tool change script itself and also 

allow access to the data in other scripts. 

The first step will be making some slight changes to the tool change positions script from the previous 

example.  It will be saved in the Modules folder as ToolChangePositions.lua. 

local TC_Positions = {} 

local inst = mc.mcGetInstance() 

 

local CSVPath = wx.wxGetCwd() .. "\\Profiles\\YourProfile\\Modules\\ToolChangePositions.csv" 

  

ToolNum = 0; 

--[[ 

Open the file and read out the data 

--]] 

 io.input(io.open(CSVPath,"r")) 

local line; 

for line in io.lines(CSVPath) do  

    tkz = wx.wxStringTokenizer(line, ","); 

    TC_Positions[ToolNum] = {}-- make a blank table in the positions table to hold the tool data  

    local token = tkz:GetNextToken(); 

    TC_Positions[ToolNum] ["Tool_Number"] = token; 

    TC_Positions[ToolNum] ["X_Position"] = tkz:GetNextToken(); 

    TC_Positions[ToolNum] ["Y_Position"] = tkz:GetNextToken(); 

    TC_Positions[ToolNum] ["Z_Position"] = tkz:GetNextToken(); 

        TC_Positions["Max"] = ToolNum 

    ToolNum = ToolNum + 1; 

end 

    io.close() 

function TC_Positions.GetToolData(SelectedToolNum) 

    local MaxToolNum = TC_Positions["Max"] 

    if (SelectedToolNum <= MaxToolNum) and (SelectedToolNum > 0) then    

        return TC_Positions[SelectedToolNum] 

    else 

        return nil 

    end 

end 

return TC_Positions 

 

Reading through this new script we can see that it is mostly the same.  The difference is an addition of a 

function, TC_Positions.GetToolData(SelectedToolNum), to return the data associated with the desired 

tool number back to the main program.  This module can stay in the modules folder, and could also be 

compiled and saved as a .mcc file instead of the .lua or .mcs formats.  Any of the three formats are 

acceptable.  A compiled .mcc file has the benefit and drawback of not being editable or even viewable. 

The function TC_Positions.GetToolData(SelectedToolNum) checks the selected tool number against the 

max tool number and zero.  If the selected tool number is in the valid range then the data is returned 

using the return command: return TC_Positions[SelectedToolNum].  If the selected tool number is 

outside the valid range then “nil” is returned.  In the main program we can use this difference in 

returned value to check if the tool number was valid or not. 

The last line in the module is return TC_Positions.  This line sends the table TC_Positions, with all of its 

contents, back to the script that loaded the module. 

Now for the main script, this is what would appear in the tool change script to get the tool change 

positions. 

local inst = mc.mcGetInstance() 



22 
 

package.path = wx.wxGetCwd() .. "\\Profiles\\YourProfile\\Modules\\?.lua;" 

if(package.loaded.ToolChangePositions == nil) then 

    tcp = require "ToolChangePositions" 

end 

 

local SelectedTool = mc.mcToolGetSelected(inst) 

 

ToolData = tcp.GetToolData(SelectedTool) 

 

if (ToolData ~= nil) then 

    Num = ToolData.Tool_Number 

    XPos = ToolData.X_Position 

    YPos = ToolData.Y_Position 

    ZPos = ToolData.Z_Position 

     

    mc.mcCntlSetLastError(inst, string.format("Tool: %.0f | X: %.3f | Y: %.3f | Z: %.3f", Num, 

XPos, YPos, ZPos)) 

else 

    mc.mcCntlSetLastError(inst, "ERROR: Tool number out of range!") 

end 

 

The first part of this script set the file path for the module, or package, to load.  The “?.lua” is like a wild 

car.  It’s looking for any file with the extension .lua, if you’re module is compiled this would need to be 

changed to .mcc.  The following if statement checks to see if the desired module, in this case 

ToolChangePositions, is loaded to the variable “tcp”.  Whatever is returned at the end of the module, in 

our module the table “TC_Positions” is returned on the last line, is now contained in the variable tcp. 

Now tool data can be retrieved by using the TC_Positions.GetToolData(SelectedTool) function.  To call it 

from the main script replace the variable name in the module with the new variable name that the 

module was loaded to in the main script, tcp.  So to get tool data for a selected tool we would call the 

function tcp.GetToolData(SelctedTool).   In this example script the command 

mc.mcToolGetSelected(inst) is used to get the currently selected tool from Mach, the last T number 

commanded in a program or in MDI.  So in the case of a tool change; if T4 M6 is commanded in a 

program then calling mc.mcToolGetSelected(inst) in the M6 macro will return a value of 4.  Passing this 

into our GetToolData function will return the position values for the selected tool provided that it is 

within the acceptable range. 

Now we can check to see if we got valid data back and use it if we did.  If the function returns nil, then 

we know that the tool number was outside the acceptable range and we can error and/or abort the 

process. 

5.4 Tool Change 
In the previous examples we’ve been building up to a tool change macro for a rack style tool changer.  

It’s time to put it all together.  We will use the module for getting the tool position data, and the main 

script from the last example will be the bones of our tool change script. 

A couple thoughts before we write the script.  1.) A tool change routine should only execute if the tool 

actually needs changing, there is no sense doing anything if the tool we want to change to is already in 

the spindle.  2.) We will be moving the machine around and changing modal states and feedrates.  It is a 

good idea to store the state of the machine prior to changing anything so it can be returned to that state 

when the tool change is complete.  This helps to avoid accidents from a machine unknowingly being 

changed into incremental mode when it is expected to be in absolute, bad feedrates being used because 
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they weren’t specified after a tool change, or any of a host of other possible issues.  Best to avoid such 

problems. 

Let’s create an m6 tool change script to use our module and change tools. 

local inst = mc.mcGetInstance() 

package.path = wx.wxGetCwd() .. "\\Profiles\\YourProfile\\Modules\\?.lua;" 

if(package.loaded.ToolChangePositions == nil) then 

    tcp = require "ToolChangePositions" 

end 

 

function m6() 

    ------ Get and compare next and current tools ------ 

    local SelectedTool = mc.mcToolGetSelected(inst) 

    local CurrentTool = mc.mcToolGetCurrent(inst)     

    if (SelectedTool == CurrentTool) then 

        mc.mcCntlSetLastError(inst, "Next tool = Current tool") 

        do return end 

    end 

     

    ------ Get current state ------ 

    local CurFeed = mc.mcCntlGetPoundVar(inst, 2134) 

    local CurFeedMode = mc.mcCntlGetPoundVar(inst, 4001) 

    local CurAbsMode = mc.mcCntlGetPoundVar(inst, 4003) 

     

    ------ Get position data for current tool ------ 

    ToolData = tcp.GetToolData(CurrentTool) 

    if (ToolData ~= nil) then 

        Num1 = ToolData.Tool_Number 

        XPos1 = ToolData.X_Position 

        YPos1 = ToolData.Y_Position 

        ZPos1 = ToolData.Z_Position 

    else 

        mc.mcCntlEStop(inst) 

  mc.mcCntlSetLastError(inst, "ERROR: Tool number out of range!") 

        do return end 

    end 

 

    ------ Get position data for next tool ------ 

    ToolData = tcp.GetToolData(SelectedTool) 

    if (ToolData ~= nil) then 

        Num2 = ToolData.Tool_Number 

        XPos2 = ToolData.X_Position 

        YPos2 = ToolData.Y_Position 

        ZPos2 = ToolData.Z_Position 

    else 

        mc.mcCntlEStop(inst) 

  mc.mcCntlSetLastError(inst, "ERROR: Tool number out of range!") 

        do return end 

    end 

     

    ------ Move to current tool change position ------ 

    local GCode = "" 

    GCode = GCode .. "G00 G90 G53 Z0.0\n" 

    GCode = GCode .. string.format("G00 G90 G53 X%.4f Y%.4f\n", XPos1, YPos1) 

    GCode = GCode .. string.format("G00 G90 G53 Z%.4f\n", ZPos1 + 1.0) 

    GCode = GCode .. string.format("G01 G90 G53 Z%.4f F15.0\n", ZPos1) 

    mc.mcCntlGcodeExecuteWait(inst, GCode) 

     

    ------ Release drawbar ------ 

    local DrawBarOut = mc.OSIG_OUTPUT4 

    local hsig = mc.mcSignalGetHandle(inst, DrawBarOut) 

    mc.mcSignalSetState(hsig, 1) 

     

    ------ Move to next tool change position ------ 

    GCode = "" 

    GCode = GCode .. string.format("G01 G90 G53 Z%.4f\n F15.0", ZPos1 + 1.0) 

    GCode = GCode .. "G00 G90 G53 Z0.0\n" 

    GCode = GCode .. string.format("G00 G90 G53 X%.4f Y%.4f\n", XPos2, YPos2) 
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    GCode = GCode .. string.format("G00 G90 G53 Z%.4f\n", ZPos2 + 1.0) 

    GCode = GCode .. string.format("G01 G90 G53 Z%.4f F15.0\n", ZPos2) 

    mc.mcCntlGcodeExecuteWait(inst, GCode) 

     

    ------ Clamp drawbar ------ 

    mc.mcSignalSetState(hsig, 0) 

     

    ------ Move Z to home position ------ 

    mc.mcCntlGcodeExecuteWait(inst, "G00 G90 G53 Z0.0\n") 

     

    ------ Reset state ------ 

    mc.mcCntlSetPoundVar(inst, 2134, CurFeed) 

    mc.mcCntlSetPoundVar(inst, 4001, CurFeedMode) 

    mc.mcCntlSetPoundVar(inst, 4003, CurAbsMode) 

     

    ------ Set new tool ------ 

    mc.mcToolSetCurrent(inst, SelectedTool) 

    mc.mcCntlSetLastError(inst, string.format("Tool change - Tool: %.0f", SelectedTool)) 

     

end 

 

if (mc.mcInEditor() == 1) then 

    m6() 

end 

 

Each section of the tool change macro is labeled to make it easier to follow.  We’ve combined all the 

code examples from the previous examples to arrive here, with a couple new additions.  Let’s walk 

through it. 

The first section of the code loads the module we will be using to look up the tool positions.  This is 

positioned outside the m6() function so that it can be available to all M codes without having to call it in 

every macro it is used in. 

Next is the m6() function.  Recall that an M code requires a function of the same name to call.  In this 

case an M6 in the program will call the m6() function. 

Now, inside the function is the meat of the tool change.  The first section, “Get and compare next and 

current tools,” gets the next tool and current tool and compares them to make sure a tool change 

should happen.  If the current tool in the spindle is the tool to be changed to exit the script. 

Previously we talked about getting the current state of the machine prior to changing anything so we 

can set it back the way we found it when the script exits.  The next section, “Get current state,” retrieves 

that data for us and saves it for later. 

The next two sections, “Get position data…,” does just what it says.  This is the section of the script that 

accesses the “ToolChangePositions” module that we created.  These two sections function just like the 

code we developed in the module example.  After getting the tool position data it is checked to make 

sure a valid selection was made.  This error also needs to stop the machine or it will just keep running 

the program when the script is exited, this is big potential for a crash.  In this example and E-stop 

command is given when an invalid tool is selected to make sure the machine is incapable of continuing 

when the script is exited.  This way if the selection is invalid we exit the script with an error rather than 

get part way thru a tool change and then error for bad data. 

If the tool selection is valid for both tools we move ahead to the next sections which perform the actual 

tool change motion.  The “Move to current tool change position,” executes a short G code program to 

move the machine to the spot in the rack for the tool currently in the spindle. 



25 
 

The “Release drawbar” section does just that.  Using the code from the example in section 5.1 we can 

make a bit of code to activate the output that controls the drawbar. 

After releasing the tool the sections, “Move to next tool change position”, “Clamp drawbar”, and “Move 

to Z home position” continue the rest of the machine motion to pick up the next tool and return home. 

After all the motion of actually changing tools, we can “Reset state” back to what it was before entering 

the macro.  The last thing to do is reset the current tool to the new tool in the “Set new tool” section.  

That ends the m6() function. 

Below that is an if statement to check if the script is open in an editor.  As discussed before this is for 

debugging, so when in the editor the function will be called. 

5.5 Automatic Tool Height Setting 
There are several ways to create an automatic tool height setting process.  It could be written in G code 

or in a Lua script.  Since this is a Lua scripting manual we’ll show one way to set tools using a Lua script.  

This example puts the auto tool height setting script in an M code for easy access from anywhere in 

Mach.  It can be executed from a button or in a program.  The following program is an example of an M 

code for automatically setting the height of a tool.  There are a number of necessary parameters that 

are stored in registers, so it is necessary to get those values before performing the operation.  This script 

follows the same format as the tool change macro example in section 5.4. 

A brief run through:  As before the first step in the script is getting and defining necessary variables and 

the current state of the machine.  Register values are retrieved using the GetRegister() function created 

in section 4.3.  It is not defined in this script so it must be defined in an M code header file or a loaded 

module to allow access to it. 

The next sections calculate the position on the touch off sensor and use a G31 probing move the tool 

into the sensor.  The state of the sensor’s signal is checked before movement to make sure it is not 

already active, and the checked again after it is touched to make sure that it was indeed contacted.  This 

is all error checking and although it is not required it is strongly suggested. 

Following the actually tool touch off movement, the offset length is calculated and set and then 

everything returned to its previous state. 

----------------------------------------------------------------------------- 

-- Auto Tool Setting Macro 

----------------------------------------------------------------------------- 

--[[ 

    Requires the following instance registers to be defined 

    TS_XPos-----------X position of probe (machine position) 

    TS_YPos-----------Y position of probe (machine position) 

    TS_Type-----------Offset type (1 or 2) 

    TS_TouchPos-------Z position of touch off surface (machine position) 

    TS_ProbeH---------Height of probe above touch off surface 

    TS_DefaultL-------Default tool length guess 

    TS_Retract--------Retract distance after probe touch 

 

    Offset Type 1-----Length of tool from gauge line to tip 

    Offset Type 2-----Distance from tip of tool to the touch position 

]] 

--The function GetRegister() must be defined for use by macros 

function m1005() 

    local inst = mc.mcGetInstance() 
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    ------------- Define Vars ------------- 

    local ProbeSignal = mc.ISIG_DIGITIZE 

 

    ------------- Get current state ------------- 

    local CurTool = mc.mcToolGetCurrent(inst) 

    local CurHNum = mc.mcCntlGetPoundVar(inst, 2032) 

    local CurFeed = mc.mcCntlGetPoundVar(inst, 2134) 

    local CurZOffset = mc.mcCntlGetPoundVar(inst, 4102) 

    local CurFeedMode = mc.mcCntlGetPoundVar(inst, 4001) 

    local CurAbsMode = mc.mcCntlGetPoundVar(inst, 4003) 

 

    ------------- Get touch off parameters ------------- 

    local Xpos = GetRegister("TS_XPos", 1) 

    local Ypos = GetRegister("TS_YPos", 1) 

    local OffsetType = GetRegister("TS_Type", 1) 

    local TouchPos = GetRegister("TS_TouchPos", 1) 

    local ProbeHeight = GetRegister("TS_ProbeH", 1) 

    local RetractDistance = GetRegister("TS_Retract", 1) 

    local ToolLengthGuess = GetRegister("TS_DefaultL", 1) 

 

    ------------- Check Probe ------------- 

    local hsig = mc.mcSignalGetHandle(inst, ProbeSignal) 

    local ProbeState = mc.mcSignalGetState(hsig) 

    if (ProbeState == true) then 

        mc.mcCntlSetLastError(inst, "ERROR: Probe signal is activated") 

        do return end 

    end 

     

    ------------- Calculations for Gcode ------------- 

    local StartHeight = TouchPos + ProbeHeight + ToolLengthGuess + .5 

     

    ------------- Generate GCode ------------- 

    AutoToolSetGCode = "" 

    AutoToolSetGCode = AutoToolSetGCode .. "G00 G80 G40 G49 G90\n" 

    AutoToolSetGCode = AutoToolSetGCode .. "G00 G53 Z0.0\n" 

    AutoToolSetGCode = AutoToolSetGCode .. string.format("G00 G53 X%.4f Y%.4f\n", Xpos, Ypos) 

    AutoToolSetGCode = AutoToolSetGCode .. string.format("G00 G53 Z%.4f\n", StartHeight) 

    AutoToolSetGCode = AutoToolSetGCode .. "G91 G31 Z-2.0 F25.\n" 

     

    mc.mcCntlGcodeExecuteWait(inst, AutoToolSetGCode) 

 

    --Check probe contact 

    ProbeState = mc.mcSignalGetState(hsig) 

    if (ProbeState ~= 1) then 

        mc.mcCntlSetLastError(inst, "ERROR: No contact with probe") 

        mc.mcCntlGcodeExecuteWait(inst, "G0 G90 G53 Z0.0\n") 

        do return end 

    end 

     

    AutoToolSetGCode = ""    

    AutoToolSetGCode = AutoToolSetGCode .. string.format("G91 G00 Z%.4f\n", RetractDistance) 

    AutoToolSetGCode = AutoToolSetGCode .. "G91 G31 Z-1.0 F10.\n" 

     

    mc.mcCntlGcodeExecuteWait(inst, AutoToolSetGCode) 

 

    --Check probe contact 

    ProbeState = mc.mcSignalGetState(hsig) 

    if (ProbeState ~= 1) then 

        mc.mcCntlSetLastError(inst, "ERROR: No contact with probe") 

        mc.mcCntlGcodeExecuteWait(inst, "G0 G90 G53 Z0.0\n") 

        do return end 

    end 

     

    AutoToolSetGCode = "" 

    AutoToolSetGCode = AutoToolSetGCode .. "G90 G00 G53 Z0.0\n" 

 

    mc.mcCntlGcodeExecuteWait(inst, AutoToolSetGCode) 

 

    ------------- Get touch position and set offset ------------- 

    local ZProbed = mc.mcCntlGetPoundVar(inst, 5063) 

    local ZOffset = ZProbed - ProbeHeight + CurZOffset 
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    if (OffsetType == 1) then 

        ZOffset = math.abs(TouchPos - ZOffset) 

    end 

     

    mc.mcToolSetData(inst, mc.MTOOL_MILL_HEIGHT, CurTool, ZOffset) 

    mc.mcCntlSetLastError(inst, string.format("Auto tool setting complete, Offset = %.4f", 

ZOffset)) 

     

    ------------- Set previous state ------------- 

    mc.mcCntlSetPoundVar(inst, 2134, CurFeed) 

    mc.mcCntlSetPoundVar(inst, 4001, CurFeedMode) 

    mc.mcCntlSetPoundVar(inst, 4003, CurAbsMode) 

     

end 

 

if (mc.mcInEditor() == 1) then 

    m1005() 

end 
 

5.6 Wizards 
Wizards are tools that can be created and used to perform common function.  In Mach4 a wizard is 

usually a graphical interface for creating G code files, very similar to conversation programming on some 

machines.  Lua gives the programmer the ability to create a wizard for anything; hole patterns, facing, 

engraving, spirals, loops, play music.  Included with Mach4 is a bolt circle wizard designed to show users 

how wizards can be built.  It is written to be easy for a user to modify to create their own wizard. 

Wizard scripts should be located in the “Wizards” folder in the Mach4 root directory.  The “Load 

Wizards” button on the default Mach4 screen will load the scripts located here.  When the 

“BoltHoleCircle” wizard is run it will open a window: 
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Figure 5-1: Bolt Hole Circle Wizard 

This window is created using the functions and variables laid out in the script.  There is a lot going on is 

this script to create the window layout and setup the buttons.  Because a lot of the programming for the 

window itself is out of the scope of this manual, we will stick to discussing how and where to modify this 

to create another wizard.  The only parts to worry about are the functions: Setupinputs(), SaveSettings(), 

GenGcode(), and variables “m_iniName” and “m_image”.  Following is the code to create the bolt circle 

wizard: 

----------------------------------------------------------------------------- 

-- Name:        BoltHolelua 

-- Author:      B Barker 

-- Modified by: 

-- Created:     08/03/2013 

-- Copyright:   (c) 2013 Newfangled Solutions. All rights reserved. 

-- Licence:     BSD license 

----------------------------------------------------------------------------- 

 

function GetNextID() 

    m_id = m_id+1 

    return m_id 

end 

--global var to hold the frame 

mainframe = nil 

panel = nil 

m_id = 0 

m_iniName = "CircleHolePat" 

 

 

ID_GENGCODE_BUT  = GetNextID() 

ID_CLOSE_BUTTON  = GetNextID() 

m_image = wx.wxGetCwd() .. "\\Wizards\\HolesNew.png" 

 

function Setupinputs() 
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 --Add all the inputs 

    local val 

    m_center_x = AddInputControl("Hole Center X",nil) 

    m_center_x:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Xcenter", "0.000") ) 

    m_center_y = AddInputControl("Hole Center Y", nil) 

    m_center_y:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Ycenter", "0.000") )  

    m_circle_dia = AddInputControl("Bolt Circle Dia", nil) 

    m_circle_dia:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Dia", "5.0") ) 

    m_NumHoles = AddInputControl("Number Of Holes", nil) 

    m_NumHoles:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Holes", "5") ) 

    m_StartAngle = AddInputControl("Start Angle", nil) 

    m_StartAngle:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Startangle", "0.000") 

) 

    m_z_depth = AddInputControl("Hole Depth", nil) 

    m_z_depth:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Depth", "-1.1200") ) 

    m_rapid_height = AddInputControl("Rapid Height", nil) 

    m_rapid_height:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "RapidHeight", 

"1.000") ) 

    m_retract_height = AddInputControl("Retract Height", nil) 

    m_retract_height:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "RetractHeight", 

".100") ) 

    m_peck_depth = AddInputControl("Peck Depth", nil) 

    m_peck_depth:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "PeckDepth", ".125") ) 

    m_feedrate = AddInputControl("Feedrate", nil) 

    m_feedrate:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Feed", "10") ) 

    m_cycletype, ID_CYCLE_TYPE = AddSelectControl("Drill cylce", {"G81 Single pass", "G83 Peck 

Drill", "G73 High speed Peck"}, ID_CYCLE_TYPE) 

    local val =  mc.mcProfileGetString(0 , tostring(m_iniName), "Cycle", "0")  

    m_cycletype:SetSelection(tonumber(val)) 

    m_spindle = AddSelectControl("Spindle Dir", {"None", "CW", "CCW"}, nil) 

 

    m_Test = AddCheckControl("Check me") 

 

    m_Test2 = AddRadioControl("Radio killed the video star") 

AddRadioControl("yes") 

AddRadioControl("No ") 

AddRadioControl("okay") 

    

end 

function SaveSettings() 

 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Xcenter", tostring(m_center_x:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Ycenter", tostring(m_center_y:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Dia", tostring(m_circle_dia:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Holes", tostring(m_NumHoles:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Depth", tostring(m_z_depth:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "RapidHeight", 

tostring(m_rapid_height:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "RetractHeight", 

tostring(m_retract_height:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "PeckDepth", 

tostring(m_peck_depth:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Feed", tostring(m_feedrate:GetValue())) 

    mc.mcProfileWriteString(0 , tostring(m_iniName), "Cycle", 

tostring(m_cycletype:GetCurrentSelection())) 

end 

function GenGcode() 

        local x_center = m_center_x:GetValue() 

        local y_center = m_center_y:GetValue() 

        local numberofholes = m_NumHoles:GetValue() 

        local dia = m_circle_dia:GetValue() 

        local stAngle = (math.pi/180)*m_StartAngle:GetValue() 

        local RapidHeight = m_rapid_height:GetValue() 

        local retheight = m_retract_height:GetValue() 

        local peck = m_peck_depth:GetValue() 

        local feed = m_feedrate:GetValue() 

        local depth = m_z_depth:GetValue() 

        local gcode = string.format("G00 Z%.4f\n", RapidHeight) 

 

        local drilltype = m_cycletype:GetCurrentSelection() 
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        local x = x_center+(dia/2)*math.cos(stAngle); 

        local y = y_center+(dia/2)*math.sin(stAngle); 

         

        local spin = m_spindle:GetCurrentSelection() 

        if(spin == 0)then 

            gcode = gcode .. "(No Spindle M Code)\n" 

        elseif(spin == 1) then 

            gcode = gcode .. "M03 (Spinle CW)\n" 

        elseif(spin == 2) then 

            gcode = gcode .. "M04 (Spinle CCW)\n" 

        end 

 

        if(drilltype == 0)then 

            gcode = gcode .. string.format("G81 X%.4f Y%.4f Z%.4f R%.4f F%.4f\n", x, y, depth, 

retheight, feed ) 

        elseif(drilltype == 1) then 

            gcode = gcode .. string.format("G83 X%.4f Y%.4f Z%.4f R%.4f Q%.4f F%.4f\n", x, y, 

depth, retheight, peck, feed ) 

        elseif(drilltype == 2) then 

            gcode = gcode .. string.format("G73 X%.4f Y%.4f Z%.4f R%.4f Q%.4f F%.4f\n", x, y, 

depth, retheight, peck, feed ) 

        end 

 

        local StepAng= (2*math.pi)/numberofholes; 

        local i 

        for i=1, numberofholes-1, 1  do 

            x=x_center+(dia/2)*math.cos(stAngle+(StepAng*i)); 

            y=y_center+(dia/2)*math.sin(stAngle+(StepAng*i)); 

            gcode = gcode .. string.format("X%.4f Y%.4f\n", x, y ) 

        end 

        gcode = gcode .. "G80\nM05\nM30" 

 

        local file = wx.wxFileDialog(panel, "Select Gcode File", "", "", "Text files 

(*.txt)|*.txt|Tap files (*.tap)|*.tap",  

                              wx.wxFD_SAVE,wx.wxDefaultPosition,wx.wxDefaultSize, "File Dialog" 

); 

        if(file:ShowModal() == wx.wxID_OK)then 

            local path = file:GetPath() 

            --wx.wxMessageBox(tostring(path)) 

            io.output(io.open(path,"w")) 

            io.write(gcode) 

            io.close() 

            mc.mcCntlLoadGcodeFile( 0, tostring(path))  

        end 

        SaveSettings() 

end 

function main() 

 

if(mcLuaPanelParent == nil)then 

    -- create the wxFrame window 

    mainframe = wx.wxFrame( wx.NULL,          -- no parent 

                        wx.wxID_ANY,          -- whatever for wxWindow ID 

                        "Mach4 Bolt Hole Wizard", -- frame caption 

                        wx.wxDefaultPosition, -- place the frame in default position 

                        wx.wxDefaultSize,     -- default frame size 

                        wx.wxDEFAULT_FRAME_STYLE ) -- use default frame styles 

 

    -- create a panel in the frame 

    panel = wx.wxPanel(mainframe, wx.wxID_ANY) 

 

    -- create a simple file menu with an exit 

    local fileMenu = wx.wxMenu() 

    fileMenu:Append(wx.wxID_EXIT, "E&xit", "Quit the wizard") 

 

    -- create a simple help menu 

    local helpMenu = wx.wxMenu() 

    helpMenu:Append(wx.wxID_ABOUT, "&About", "About Bolt Hole Wizard") 

 

    -- create a menu bar and append the file and help menus 

    local menuBar = wx.wxMenuBar() 

    menuBar:Append(fileMenu, "&File") 
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    menuBar:Append(helpMenu, "&Help") 

 

    -- attach the menu bar into the frame 

    mainframe:SetMenuBar(menuBar) 

 

    -- create a simple status bar 

    mainframe:CreateStatusBar(1) 

    mainframe:SetStatusText("No Error.") 

 

    -- connect the selection event of the exit menu item to an 

    -- event handler that closes the window 

    mainframe:Connect(wx.wxID_EXIT,  

                      wx.wxEVT_COMMAND_MENU_SELECTED, 

                      function (event)  

                          mainframe:Close(true)  

                      end ) 

 

    -- connect the selection event of the about menu item 

    mainframe:Connect(wx.wxID_ABOUT, wx.wxEVT_COMMAND_MENU_SELECTED, 

        function (event) 

             wx.wxMessageBox("Bolt Hole pattern wizard \n\nAuthor: Brian Barker\nDate: 

8/3/13\nThis wizard is to be used as an example of how to make a wizard", 

                            "About wxLua", 

                            wx.wxOK + wx.wxICON_INFORMATION, 

                            mainframe) 

        end ) 

 

else 

    panel = mcLuaPanelParent 

end 

 

    --Set up the main sizer so we can start adding controls 

    local mainSizer = wx.wxBoxSizer(wx.wxVERTICAL) 

    local InputsGridSizer  = wx.wxFlexGridSizer( 2, 4, 0, 0 ) 

    InputsGridSizer:AddGrowableCol(1, 0) 

  

    function AddInputControl(name_string, width) 

        if(width == nil)then  

            width = 100 

        end 

        local textCtrlID = GetNextID() 

        local staticText = wx.wxStaticText( panel, wx.wxID_ANY, name_string) 

        local textCtrl   = wx.wxTextCtrl( panel, textCtrlID, "0.000", wx.wxDefaultPosition, 

wx.wxSize(width, -1), wx.wxTE_PROCESS_ENTER ,wx.wxTextValidator(wx.wxFILTER_NUMERIC)) 

        InputsGridSizer:Add( staticText, 0, wx.wxALIGN_CENTER_VERTICAL+wx.wxALL+wx.wxALIGN_RIGHT, 

2) 

        InputsGridSizer:Add( textCtrl,   0, wx.wxGROW+wx.wxALIGN_CENTER+wx.wxALL+wx.wxALIGN_LEFT, 

2) 

        return textCtrl, textCtrlID 

    end 

 

    function AddCheckControl(name_string)  

        local ID = GetNextID() 

        local staticText = wx.wxStaticText( panel, wx.wxID_ANY, name_string) 

        local Ctrl   = wx.wxCheckBox( panel, ID, "", wx.wxDefaultPosition, wx.wxDefaultSize, 

wx.wxTE_PROCESS_ENTER ,wx.wxTextValidator(wx.wxFILTER_NUMERIC)) 

        InputsGridSizer:Add( staticText, 0, wx.wxALIGN_CENTER_VERTICAL+wx.wxALL+wx.wxALIGN_RIGHT, 

2) 

        InputsGridSizer:Add( Ctrl,   0, wx.wxGROW+wx.wxALIGN_CENTER+wx.wxALL+wx.wxALIGN_LEFT, 2) 

        return Ctrl, ID 

    end 

 

    function AddRadioControl(name_string)  

        local ID = GetNextID() 

        local sizer = wx.wxBoxSizer( wx.wxHORIZONTAL ) 

        local Ctrl   = wx.wxRadioButton( panel, ID, name_string, wx.wxDefaultPosition, 

wx.wxDefaultSize, wx.wxTE_PROCESS_ENTER ,wx.wxTextValidator(wx.wxFILTER_NUMERIC)) 

        InputsGridSizer:Add( sizer, 0, wx.wxALIGN_CENTER_VERTICAL+wx.wxALL+wx.wxALIGN_RIGHT, 2) 

        InputsGridSizer:Add( Ctrl,   0, wx.wxGROW+wx.wxALIGN_CENTER+wx.wxALL+wx.wxALIGN_LEFT, 2) 

        return Ctrl, ID 

    end 
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    function AddSelectControl(name_string, selections, selCtrlID) 

        local selCtrlID = GetNextID() 

        local staticText = wx.wxStaticText( panel, wx.wxID_ANY, name_string ) 

        local selCtrl   = wx.wxComboBox(panel, selCtrlID, "", wx.wxDefaultPosition, 

wx.wxSize(100, -1), selections) 

        selCtrl:SetSelection(0) 

        InputsGridSizer:Add( staticText, 0, wx.wxALIGN_CENTER_VERTICAL+wx.wxALL+wx.wxALIGN_RIGHT, 

2) 

        InputsGridSizer:Add( selCtrl,   0, wx.wxGROW+wx.wxALIGN_CENTER, 2) 

        return selCtrl, selCtrlID 

    end 

    -- Add image to the top 

    local hbmp = wx.wxBitmap(m_image) 

    local TopImage = wx.wxStaticBitmap(panel, wx.wxID_ANY, hbmp ) 

    --Setup the inputs 

    Setupinputs() 

 

    -- make the bottom buttons 

    local buttonSizer = wx.wxBoxSizer( wx.wxHORIZONTAL ) 

    local genGcode = wx.wxButton( panel, ID_GENGCODE_BUT, "&PostGcode") 

    genGcode:SetBackgroundColour(wx.wxColour(0,255, 128)) 

     

    buttonSizer:Add(    genGcode, 0, wx.wxALIGN_CENTER+wx.wxALL, 2 ) 

    if(mcLuaPanelParent == nil)then 

        local closeButton = wx.wxButton( panel, ID_CLOSE_BUTTON, "E&xit") 

        buttonSizer:Add( closeButton, 0, wx.wxALIGN_CENTER+wx.wxALL, 2 ) 

    end 

     

    --Set up the sizers 

    mainSizer:Add(        TopImage, 0, wx.wxALIGN_CENTER+wx.wxALL, 2 ) 

    mainSizer:Add( InputsGridSizer, 0, wx.wxALIGN_CENTER+wx.wxALL, 2 ) 

    mainSizer:Add(     buttonSizer, 0, wx.wxALIGN_CENTER+wx.wxALL, 2 ) 

 

    panel:SetSizer( mainSizer ) 

     

    panel:Connect(ID_GENGCODE_BUT, wx.wxEVT_COMMAND_BUTTON_CLICKED, 

    function(event)  

       GenGcode() 

    end) 

     

    panel:Connect(ID_CYCLE_TYPE, wx.wxEVT_COMMAND_COMBOBOX_SELECTED, 

    function(event)  

        if(m_cycletype:GetCurrentSelection() == 0)then 

            m_peck_depth:SetEditable(false) 

            m_peck_depth:SetBackgroundColour(wx.wxColour("LIGHT GRAY")) 

        else 

            m_peck_depth:SetEditable(true) 

            m_peck_depth:SetBackgroundColour(wx.wxColour(wx.wxNullColour)) 

        end 

        

    end) 

 

    

 

-- Connect a handler for pressing enter in the textctrls 

    panel:Connect(wx.wxID_ANY, wx.wxEVT_COMMAND_TEXT_ENTER, 

    function(event) 

        -- Send "fake" button press to do calculation. 

        -- Button ids have been set to be -1 from textctrl ids. 

      --  dialog:ProcessEvent(wx.wxCommandEvent(wx.wxEVT_COMMAND_BUTTON_CLICKED, event:GetId()-

1)) 

    end) 

 

    -- show the frame window 

     

    if(mcLuaPanelParent == nil)then 

        panel:Connect(ID_CLOSE_BUTTON, wx.wxEVT_COMMAND_BUTTON_CLICKED, 

                        function(event) mainframe:Destroy() end) 

        panel:Fit() 

        mainframe:Fit() 
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        mainframe:Show(true) 

    end 

end 

 

main() 

 

wx.wxGetApp():MainLoop() 

 

First is “m_iniName”.  Variable values from the input boxes will be stored in a section in the machine.ini 

file.  Set “m_iniName” to be something descriptive, usually similar to the name of the wizard.  This helps 

with organization in the .ini file. 

m_iniName = "CircleHolePat" 

 

Next is “m_image.”  This variable sets the path to the image to be displayed at the top of the wizard 

window.  Change the file path and name to match the location of the desired image. 

m_image = wx.wxGetCwd() .. \\Wizards\\HolesNew.png 

 

The first function is Setupinputs().  This function defines the inputs to be displayed at the bottom of the 

wizard window.  The formatting is already done, all that is required is to add or remove lines and 

rename them to the desired variable and description.  Generally each input will have two lines of code, 

the first calls the function AddInputControl() to add the label and input box to the wizard window.  In 

the snippet below “m_center_x” will be assigned the value of whatever is input into the input box 

labeled “Hole Center X”.  The second line sets the value of “m_center_x” and the input box to the last 

value that was saved in the machine.ini file, in the “CircleHolePat” section with the handle “Xcenter”.  If 

there is no value in the .ini then a default value of 0.00 will be assigned. 

    m_center_x = AddInputControl("Hole Center X",nil) 

    m_center_x:SetValue( mc.mcProfileGetString(0 , tostring(m_iniName), "Xcenter", "0.000") ) 

 

Drop down selection boxes are also possible using the following format: 

    m_spindle = AddSelectControl("Spindle Dir", {"None", "CW", "CCW"}, nil) 

 

Radio controls and check boxes also have functions for easy creation. 

    m_Test = AddCheckControl("Check me") 

 

    m_Test2 = AddRadioControl("Radio killed the video star") 

 

 

5.7 Modbus 
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